1
|
Zhang Y, Zhang D, Xu Q, Xia S, Shen P, Yang C. Fostamatinib alleviates temporomandibular joint osteoarthritis by maintaining cartilage homeostasis through MAPK/NF-κB and AKT/mTOR pathways. Int Immunopharmacol 2025; 147:113996. [PMID: 39756165 DOI: 10.1016/j.intimp.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a common degenerative disease characterized by cartilage degeneration. However, the therapeutic strategies aimed to maintain cartilage homeostasis remain unclear. Fostamatinib (Fos) is a potential clinical drug for rheumatoid arthritis (RA) and predicted as target drug for many inflammatory diseases. In this study we investigated the therapeutic effects of Fos for TMJ OA and underlying mechanisms. Interleukin-1β (IL-1β) was used to construct a condylar chondrocyte injury model in vitro and rat TMJ OA models were induced by unilateral anterior crossbite (UAC) in vivo. Subsequently, a series of experiments were performed to assess the therapeutic effects and potential mechanisms of Fos in TMJ OA. Herein, we verified that Fos improved IL-1β-induced decrease in chondrocyte viability and proliferation, as well as inhibited cell apoptosis. Additionally, Fos could alleviate IL-1β-induced inflammation, ECM degradation, and chondrocyte phenotype change through blocking MAPK/NF-κB pathways, as well as promote chondrocyte autophagy by regulating AKT/mTOR pathways. The therapeutic effects of Fos on TMJ OA were further validated through rat UAC model in vivo. Overall, Fos could maintaining cartilage homeostasis through regulating chondrocyte inflammation, ECM degradation, and abnormal cell biological behaviors (apoptosis and autophagy), which made it a promising small molecule drug for TMJ OA early intervention.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China; Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Qingyu Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
2
|
Song Y, Zhao Y, Zhang X, Cheng C, Yan H, Liu D, Zhang D. Construction of AMPK-related circRNA network in mouse myocardial ischemia-reperfusion injury model. BMC Cardiovasc Disord 2024; 24:759. [PMID: 39736524 DOI: 10.1186/s12872-024-04387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE To screen Myocardial ischemia-reperfusion Injury in mice. adenosine monophate-activatedprotein kinase (AMPK) -related differentially expressed circularRNA (circRNA) in MIRI model, Ampk-related circRNA network was drawn to provide possible ideas for the prevention and treatment of MIRI. METHODS The mouse MIRI model was constructed by ligation of the left anterior descending artery. After the model was successfully established, the related indicators of cardiac function were detected, and high-throughput sequencing was performed on the myocardial tissue of the mice. RESULTS MIRI model was successfully constructed, and two AMPK related differentially expressed loops (novel_circ_043550 and novel_circ_035243) were screened out. A circRNA-miRNA-mRNA network consisting of 2 circRNA, 28 microRNA(miRNA) and 229 messengerRNA (mRNA) was constructed. CONCLUSIONS This study reveals the differential expression of several AMPK-related circRNAs in MIRI in mice, and the AMPK-related circRNA regulatory network is constructed, suggesting that AMPK-related circRNA may have potential clinical application prospects as a potential molecular marker and therapeutic target for MIRI.
Collapse
Affiliation(s)
- Yang Song
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yi Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiaodi Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Cheng Cheng
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Haidong Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
3
|
Sun L, Wei S, Wang C, Zhang Y, Zan X, Li L, Zhang C. Procyanidin capsules provide a new option for long-term ROS scavenging in chronic inflammatory diseases. Mater Today Bio 2024; 29:101310. [PMID: 39534678 PMCID: PMC11554635 DOI: 10.1016/j.mtbio.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic inflammatory diseases such as diabetic wounds and osteoarthritis are significant threats to human health. Failure to scavenge longstanding excessive reactive oxygen species (ROS) is an important cause of chronic inflammatory diseases, yet existing treatments that provide long-lasting therapeutic effects are limited. Here, procyanidin capsules were synthesized in a simple one-step way using calcium carbonate as a template. The biosafety of procyanidin capsules in vitro and in vivo was monitored by cytotoxicity and pathological sections. The therapeutic effect of procyanidin capsules in diabetic wounds and osteoarthritis was accessed by pathological evaluation combined with the quantification of inflammatory markers. The data showed that procyanidin capsules could long-term scavenge excessive ROS and effectively promote articular cartilage repair in osteoarthritis, accelerating diabetic wound healing. Lastly, transcriptome analysis suggested that procyanidin capsules commonly regulated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling in diabetic wounds and osteoarthritis. This study provides a straightforward protocol for creating procyanidin capsules, while presenting a promising new therapeutic option for long-term scavenging ROS in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shaoyin Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yipiao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunwu Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
4
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
5
|
Zhang H, Zhou Y, Jiang C, Jian N, Wang J. Crosstalk of ubiquitin system and non-coding RNA in fibrosis. Int J Biol Sci 2024; 20:3802-3822. [PMID: 39113708 PMCID: PMC11302871 DOI: 10.7150/ijbs.93644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic tissue injury triggers changes in the cell type and microenvironment at the site of injury and eventually fibrosis develops. Current research suggests that fibrosis is a highly dynamic and reversible process, which means that human intervention after fibrosis has occurred has the potential to slow down or cure fibrosis. The ubiquitin system regulates the biological functions of specific proteins involved in the development of fibrosis, and researchers have designed small molecule drugs to treat fibrotic diseases on this basis, but their therapeutic effects are still limited. With the development of molecular biology technology, researchers have found that non-coding RNA (ncRNA) can interact with the ubiquitin system to jointly regulate the development of fibrosis. More in-depth explorations of the interaction between ncRNA and ubiquitin system will provide new ideas for the clinical treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Huamin Zhang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| |
Collapse
|
6
|
Liu C, Sun Y, Li D, Wang F, Wang H, An S, Sun S. A multifunctional nanogel encapsulating layered double hydroxide for enhanced osteoarthritis treatment via protection of chondrocytes and ECM. Mater Today Bio 2024; 26:101034. [PMID: 38596826 PMCID: PMC11002310 DOI: 10.1016/j.mtbio.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is characterized by progressive and irreversible damage to the articular cartilage and a consecutive inflammatory response. However, the majority of clinical drugs for OA treatment only alleviate symptoms without addressing the fundamental pathology. To mitigate this issue, we developed an inflammation-responsive carrier and encapsulated bioactive material, namely, LDH@TAGel. The LDH@TAGel was designed with anti-inflammatory and antioxidative abilities, aiming to directly address the pathology of cartilage damage. In particular, LDH was confirmed to restore the ECM secretion function of damaged chondrocytes and attenuate the expression of catabolic matrix metalloproteinases (Mmps). While TAGel showed antioxidant properties by scavenging ROS directly. In vitro evaluation revealed that the LDH@TAGel could protect chondrocytes from inflammation-induced oxidative stress and apoptosis via the Nrf2/Keap1 system and Pi3k-Akt pathway. In vivo experiments demonstrated that the LDH@TAGel could alleviated the degeneration and degradation of cartilage induced by anterior cruciate ligament transection (ACLT). The OARSI scores indicating OA severity decreased significantly after three weeks of intervention. Moreover, the IVIS image revealed that LDH@TAGel enhances the controlled release of LDH in a manner that can be customized according to the severity of OA, allowing adaptive, precise treatment. In summary, this novel design effectively alleviates the underlying pathological causes of OA-related cartilage damage and has emerged as a promising biomaterial for adaptive, cause-targeted OA therapies.
Collapse
Affiliation(s)
- Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Fan Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Senbo An
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
7
|
Jin G, Xu W, Tang H, Cui Y, Zhang H. Bisdemethoxycurcumin, a curcumin, protects chondrocytes, and reduces cartilage inflammation via the NRF2/HO-1/NLRP3 pathway. Immun Inflamm Dis 2024; 12:e1195. [PMID: 38411358 PMCID: PMC10898200 DOI: 10.1002/iid3.1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The objective of this thesis is to evaluate the effect of bisdemethoxycurcumin (BDMC) on osteoarthritis (OA) and comprehensively evaluate the role of the Nuclear Factor erythroid 2-Related Factor 2 (Nrf2) signalling pathway in chondrocytes. METHOD In our study, we treated chondrocytes with BDMC in an in vitro chondrocyte assay and measured its influence on extracellular matrix (ECM) expression, downstream heme oxygenase-1 (HO-1) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels. RESULTS Our study indicates that BDMC significantly activates the Nrf2 signaling pathway in chondrocytes in vitro. Furthermore, the expression of matrix metalloproteinase 3, interleukin 1β, recombinant a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4 and (ADAMTS)5 was significantly suppressed by BDMC. CONCLUSION This study confirms the potential for BDMC to activate the Nrf2/HO-1/NLRP3 signalling pathway and alleviate OA symptoms. Therefore, BDMC is a promising therapeutic agent for OA that offers new insights and treatment methods.
Collapse
Affiliation(s)
- Gang Jin
- Department of OrthopedicsTaizhou Hospital Affiliated to Wenzhou Medical University, LinhaiZhejiangChina
| | - Wei Xu
- Department of OrthopedicsTaizhou Hospital Affiliated to Wenzhou Medical University, LinhaiZhejiangChina
| | - Huilin Tang
- Department of OrthopedicsTaizhou Hospital Affiliated to Wenzhou Medical University, LinhaiZhejiangChina
| | - Yaying Cui
- Department of OrthopedicsTaizhou Hospital Affiliated to Wenzhou Medical University, LinhaiZhejiangChina
| | - Han Zhang
- Department of OrthopedicsTaizhou Hospital Affiliated to Wenzhou Medical University, LinhaiZhejiangChina
| |
Collapse
|
8
|
Pan X, Zhao Z, Huang X, Cen X. Circ-Slain2 Alleviates Cartilage Degradation and Inflammation of TMJOA. J Dent Res 2023; 102:1498-1506. [PMID: 37817544 DOI: 10.1177/00220345231198448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease with the cessation of matrix anabolism and aggravation of inflammation, which results in severe pain and impaired joint function. However, the mechanisms are not well understood. Circular RNAs (circRNAs) are reported to have various biological functions and participate in the development, diagnosis, prognosis, and treatment of different diseases. This study aimed to investigate the roles and mechanisms of circ-slain2 in TMJOA. We first established TMJOA mouse models and found circ-slain2 was lowly expressed in the cartilage of TMJOA through sequencing data. We observed that circ-slain2 is predominantly localized in the cytoplasm and downregulated in mouse condylar chondrocytes (mCCs) treated with tumor necrosis factor α (TNFα) and interferon γ (IFNγ). Micro-computed tomography and histological examination showed that intra-articular injection of circ-slain2 overexpressing adeno-associated virus could alleviate cartilage catabolism and synovial inflammation to relieve TMJOA in vivo. In addition, elevated circ-slain2 also showed anticatabolic and anti-inflammatory effects on IFNγ- and TNFα-stimulated mouse condylar chondrocytes (mCCs). Functional enrichment analysis indicated that protein processing in endoplasmic reticulum (ER) was associated with TMJOA, and further functional experiments confirmed that circ-slain2 could suppress ER stress in OA mCCs. RNA binding protein immunoprecipitation assay revealed an overt interaction between activating transcription factor 6 (ATF6) and circ-slain2. Inhibition of the expression of both ATF6 and circ-slain2 resulted in dilation of the ER and enhanced the expression of ER stress markers, whose ER stress level was higher than inhibition of ATF6 but lower than knockdown of circ-slain2 expression. Collectively, our research demonstrated that circ-slain2 could regulate ATF6 to relieve ER stress, reducing temporomandibular joint cartilage degradation and synovial inflammation. These findings provide prospects for developing novel osteoarthritis therapies based on circ-slain2 by focusing on reducing the inflammation of synovium and the imbalance between matrix synthesis and degradation.
Collapse
Affiliation(s)
- X Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Temporomandibular joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Cao N, Wang D, Liu B, Wang Y, Han W, Tian J, Xiang L, Wang Z. Silencing of STUB1 relieves osteoarthritis via inducing NRF2-mediated M2 macrophage polarization. Mol Immunol 2023; 164:112-122. [PMID: 37992540 DOI: 10.1016/j.molimm.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES Shifting macrophages towards an anti-inflammatory state is key in treating osteoarthritis (OA) by reducing inflammation and tissue damage. However, the underlying mechanisms guiding this shift remain largely undefined. STUB1, an E3 ubiquitin ligase, known for its regulatory role in macrophage polarization. This study aims to explore the function and underlying action mechanisms of STUB1 in OA. METHODS An in vivo OA model was established in rats. Hematoxylin-Eosin and safranin O-fast green staining were performed to reveal the hispathological injuries in knee-joint tissues. Immunohistochemistry and flow cytometry were performed to detect the distribution of M1 and M2 macrophages. The inflammatory response (TNF-α and IL-6 levels) was evaluated by ELISA. In vitro, the interaction between STUB1 and NFR2 was determined by CO-IP and pull-down assays. After treated with LPS (an in vitro model of OA), the viability and apoptosis of chondrocytes were measured by CCK-8 and flow cytometry, respectively. RESULTS Silencing STUB1 alleviated OA in rats, as indicated by reduced subchondral bone thickness, knee synovitis score, histopathological damages, and inflammatory response. STUB1 silencing also decreased M1 macrophages and increased M2 macrophages in both in vivo and in vitro settings. NRF2 was identified as a target of STUB1, with STUB1 mediating its ubiquitination. Silencing NRF2 reversed the effects of STUB1 silencing on inducing M2 macrophage polarization. Furthermore, silencing STUB1 upregulated NRF2 expression in LPS-treated chondrocytes, promoting cell viability and inhibiting apoptosis. CONCLUSION Silencing STUB1 induces M2 macrophage polarization by inhibiting NRF2 ubiquitination, thereby contributing to the mitigation of OA.
Collapse
Affiliation(s)
- Nan Cao
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Danni Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Bin Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Yu Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Wenfeng Han
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Jing Tian
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China.
| | - Zheng Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China.
| |
Collapse
|
10
|
Li J, Li X, Zhou S, Wang Y, Ying T, Wang Q, Wu Y, Zhao F. Circular RNA circARPC1B functions as a stabilisation enhancer of Vimentin to prevent high cholesterol-induced articular cartilage degeneration. Clin Transl Med 2023; 13:e1415. [PMID: 37740460 PMCID: PMC10517209 DOI: 10.1002/ctm2.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression. METHODS We measured total cholesterol (TC) levels in the synovial fluid of patients with or without OA to determine the diagnostic role of cholesterol in OA. The effects of cholesterol were explored in human and mouse chondrocytes in vitro. An in vivo OA model was also established in mice fed a high-cholesterol diet (HCD) to explore the role of cholesterol in OA. RNAseq analysis was used to study the influence of cholesterol on circRNAs in chondrocytes. The role of circARPC1B in the OA development was verified through circARPC1B overexpression and knockdown. Additionally, RNA pulldown assays and RNA binding protein immunoprecipitation were used to determine the interaction between circARPC1B and Vimentin. CircARPC1B adeno-associated virus (AAV) was used to determine the role of circARPC1B in cholesterol-induced OA. RESULTS TC levels in synovial fluid of OA patients were found to be elevated and exhibited high sensitivity and specificity as predictors of OA diagnosis. Moreover, elevated cholesterol accelerated OA progression. CircARPC1B was downregulated in chondrocytes treated with cholesterol and played a crucial role in preserving the extracellular matrix (ECM). Mechanistically, circARPC1B is competitively bound to the E3 ligase synoviolin 1 (SYVN1) binding site on Vimentin, inhibiting the proteasomal degradation of Vimentin. Furthermore, circARPC1B AAV infection alleviates Vimentin degradation and OA progression caused by high cholesterol. CONCLUSIONS These findings indicate that the cholesterol-circARPC1B-Vimentin axis plays a crucial role in OA progression, and circARPC1B gene therapy has the opportunity to provide a potential therapeutic approach for OA.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of MedicineHangzhouChina
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|