1
|
Mou Z, Chen Y, Hu J, Hu Y, Zou L, Chen X, Liu S, Yin Q, Gong J, Li S, Mao S, Xu C, Jiang H. Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation. Acta Pharm Sin B 2024; 14:3916-3930. [PMID: 39309483 PMCID: PMC11413672 DOI: 10.1016/j.apsb.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor relapse and metastasis are the major causes of mortality associated with urothelial cancer. In the tumor microenvironment, negative regulatory molecules and various immune cell subtypes suppress antitumor immunity. The inflammatory microenvironment, associated with neutrophils and neutrophil extracellular traps (NETs), promotes tumor metastasis. However, no drugs are currently available to specifically inhibit neutrophils and NETs. In this study, we first demonstrated that icaritin (ICT), a Chinese herbal remedy that is a first-line treatment for advanced and incurable hepatocellular carcinoma, reduces NETs caused by suicidal NETosis and prevents neutrophil infiltration in the tumor microenvironment. Mechanistically, ICT binds to and inhibits the expression of PADI2 in neutrophils, thereby suppressing PADI2-mediated histone citrullination. Moreover, ICT inhibits ROS generation, suppresses the MAPK signaling pathway, and inhibits NET-induced tumor metastasis. Simultaneously, ICT inhibits tumoral PADI2-mediated histone citrullination, which consequently suppresses the transcription of neutrophil-recruiting genes such as GM-CSF and IL-6. The downregulation of IL-6 expression, in turn, forms a regulatory feedback loop through the JAK2/STAT3/IL-6 axis. Through a retrospective study of clinical samples, we found a correlation between neutrophils, NETs, UCa prognosis, and immune evasion. Combining ICT with immune checkpoint inhibitors may have synergistic effects. In summary, our study demonstrated that ICT could be a novel inhibitor of NETs and a novel UCa treatment.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Jinzhong Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Qiuping Yin
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Gong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
2
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
3
|
Dong J, Zhao J, Wu Z, Liu J, Wang B, Qi X. The Predictive Value of Neutrophil Extracellular Trap-Related Risk Score in Prognosis and Immune Microenvironment of Colorectal Cancer Patients. Mol Biotechnol 2024:10.1007/s12033-024-01135-4. [PMID: 38580851 DOI: 10.1007/s12033-024-01135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 04/07/2024]
Abstract
Colorectal cancer (CRC) has brought great healthy burden for patients. Neutrophil extracellular traps (NETs) have been explored in several tumors, while it remains largely unclear in CRC. CRC-related data were downloaded from Cancer Genome Atlas and Gene Expression Omnibus databases. Then, a NET risk score was built after univariate Cox and LASSO Cox regression analysis. Prognostic value was evaluated via survival analysis, stratification analysis, and ROC analysis. The functional enrichment analysis was conducted basing on bulk and scRNA-seq data. The immune landscape difference was analyzed using CIBERSORT, XCell, and MCPcounter portals. NET risk score was built for CRC patients, basing on G0S2, HIST1H2BC, CRISPLD2, and IL17A. In TCGA-CRC and validation datasets, regardless of age or gender, high-risk CRC patients had significantly worse prognosis, besides higher NET risk score was mainly found in samples with MSI-H and advanced T, N, and M stages. Employing multiple databases, we noticed that M0 and M2 Macrophages infiltrated the most in high-risk CRC patients, besides M2 Macrophages and neutrophils showed positive correlation with NET risk score. A novel reliable prognostic NET risk score was developed for CRC patients, and high-risk patients had unfavorable prognosis with advanced disease status.
Collapse
Affiliation(s)
- Jiuxing Dong
- Department of Oncology, Hebei Petrochina Central Hospital, NO. 51 Xinkai Road, Langfang, 065000, Hebei, China
| | - Jia Zhao
- Department of Oncology, Hebei Petrochina Central Hospital, NO. 51 Xinkai Road, Langfang, 065000, Hebei, China
| | - Zhenming Wu
- Department of Oncology, Hebei Petrochina Central Hospital, NO. 51 Xinkai Road, Langfang, 065000, Hebei, China
| | - Jun Liu
- Department of Oncology, Hebei Petrochina Central Hospital, NO. 51 Xinkai Road, Langfang, 065000, Hebei, China
| | - Baoxin Wang
- Department of Oncology, Hebei Petrochina Central Hospital, NO. 51 Xinkai Road, Langfang, 065000, Hebei, China
| | - Xiuheng Qi
- Department of Oncology, Hebei Petrochina Central Hospital, NO. 51 Xinkai Road, Langfang, 065000, Hebei, China.
| |
Collapse
|
4
|
Zhu F, Jing D, Zhou H, Hu Z, Wang Y, Jin G, Yang Y, Zhou G. Blockade of Syk modulates neutrophil immune-responses via the mTOR/RUBCNL-dependent autophagy pathway to alleviate intestinal inflammation in ulcerative colitis. PRECISION CLINICAL MEDICINE 2023; 6:pbad025. [PMID: 37941642 PMCID: PMC10628969 DOI: 10.1093/pcmedi/pbad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Background Ulcerative colitis (UC) is a progressive chronic inflammatory disorder. Neutrophils play a critical role in regulating intestinal mucosal homeostasis in UC. Spleen tyrosine kinase (Syk) is involved in several inflammatory diseases. Here, we evaluated the effects and underlying mechanisms of Syk on neutrophil immune-responses in UC. Methods Syk expression in the colonic tissues of patients with UC was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. Colonic biopsies from patients with UC were obtained for single-cell RNA-sequencing. Neutrophils isolated from peripheral blood were pre-treated with R788 (a Syk inhibitor) and gene differences were determined using RNA sequencing. Neutrophil functions were analyzed using qRT-PCR, flow cytometry, and Transwell assay. R788 was administered daily to mice with dextran sulfate sodium (DSS)-induced colitis to verify the effects of Syk on intestinal inflammation. Results Syk expression was increased in inflamed mucosa and neutrophils of patients with UC and positively correlated with disease activity. Pharmacological inhibition of Syk in neutrophils decreased the production of pro-inflammatory cytokines, chemokines, neutrophil extracellular traps, reactive oxygen species, and myeloperoxidase. Apoptosis and migration of neutrophils were suppressed by Syk blockade. Syk blockade ameliorated mucosal inflammation in DSS-induced murine colitis by inhibiting neutrophil-associated immune responses. Mechanistically, Syk regulated neutrophil immune-responses via the mammalian target of rapamycin kinase/rubicon-like autophagy enhancer-dependent autophagy pathway. Conclusions Our findings indicate that Syk facilitates specific neutrophil functional responses to mucosal inflammation in UC, and its inhibition ameliorates mucosal inflammation in DSS-induced murine colitis, suggesting its potential as a novel therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Huihui Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| |
Collapse
|
5
|
Mo Y, Adu-Amankwaah J, Qin W, Gao T, Hou X, Fan M, Liao X, Jia L, Zhao J, Yuan J, Tan R. Unlocking the predictive potential of long non-coding RNAs: a machine learning approach for precise cancer patient prognosis. Ann Med 2023; 55:2279748. [PMID: 37983519 DOI: 10.1080/07853890.2023.2279748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
The intricate web of cancer biology is governed by the active participation of long non-coding RNAs (lncRNAs), playing crucial roles in cancer cells' proliferation, migration, and drug resistance. Pioneering research driven by machine learning algorithms has unveiled the profound ability of specific combinations of lncRNAs to predict the prognosis of cancer patients. These findings highlight the transformative potential of lncRNAs as powerful therapeutic targets and prognostic markers. In this comprehensive review, we meticulously examined the landscape of lncRNAs in predicting the prognosis of the top five cancers and other malignancies, aiming to provide a compelling reference for future research endeavours. Leveraging the power of machine learning techniques, we explored the predictive capabilities of diverse lncRNA combinations, revealing their unprecedented potential to accurately determine patient outcomes.
Collapse
Affiliation(s)
- Yixuan Mo
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Wenjie Qin
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Tan Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xiaoqing Hou
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Mengying Fan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xuemei Liao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Liwei Jia
- Department of Pathology, UT Southwestern Medical Center, Dallas, UT, USA
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Qi L, Chen F, Wang L, Yang Z, Zhang W, Li Z. Deciphering the role of NETosis-related signatures in the prognosis and immunotherapy of soft-tissue sarcoma using machine learning. Front Pharmacol 2023; 14:1217488. [PMID: 37408763 PMCID: PMC10318157 DOI: 10.3389/fphar.2023.1217488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Background: Soft-tissue sarcomas (STSs) are a rare type of cancer, accounting for about 1% of all adult cancers. Treatments for STSs can be difficult to implement because of their diverse histological and molecular features, which lead to variations in tumor behavior and response to therapy. Despite the growing importance of NETosis in cancer diagnosis and treatment, researches on its role in STSs remain limited compared to other cancer types. Methods: The study thoroughly investigated NETosis-related genes (NRGs) in STSs using large cohorts from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine Recursive Feature Elimination (SVM-RFE) were employed for screening NRGs. Utilizing single-cell RNA-seq (scRNA-seq) dataset, we elucidated the expression profiles of NRGs within distinct cellular subpopulations. Several NRGs were validated by quantitative PCR (qPCR) and our proprietary sequencing data. To ascertain the impact of NRGs on the sarcoma phenotype, we conducted a series of in vitro experimental investigations. Employing unsupervised consensus clustering analysis, we established the NETosis clusters and respective NETosis subtypes. By analyzing DEGs between NETosis clusters, an NETosis scoring system was developed. Results: By comparing the outcomes obtained from LASSO regression analysis and SVM-RFE, 17 common NRGs were identified. The expression levels of the majority of NRGs exhibited notable dissimilarities between STS and normal tissues. The correlation with immune cell infiltration were demonstrated by the network comprising 17 NRGs. Patients within various NETosis clusters and subtypes exhibited different clinical and biological features. The prognostic and immune cell infiltration predictive capabilities of the scoring system were deemed efficient. Furthermore, the scoring system demonstrated potential for predicting immunotherapy response. Conclusion: The current study presents a systematic analysis of NETosis-related gene patterns in STS. The results of our study highlight the critical role NRGs play in tumor biology and the potential for personalized therapeutic approaches through the application of the NETosis score model in STS patients.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Fangyue Chen
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Lu Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, UT Health Science Center, University of Texas, San Antonio, TX, United States
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
7
|
Villarroel-Espindola F, Ejsmentewicz T, Gonzalez-Stegmaier R, Jorquera RA, Salinas E. Intersections between innate immune response and gastric cancer development. World J Gastroenterol 2023; 29:2222-2240. [PMID: 37124883 PMCID: PMC10134417 DOI: 10.3748/wjg.v29.i15.2222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastric cancer (GC) is the fifth most commonly diagnosed malignancy. It has a reduced prevalence but has maintained its poor prognosis being the fourth leading cause of deaths related to cancer. The highest mortality rates occur in Asian and Latin American countries, where cases are usually diagnosed at advanced stages. Overall, GC is viewed as the consequence of a multifactorial process, involving the virulence of the Helicobacter pylori (H. pylori) strains, as well as some environmental factors, dietary habits, and host intrinsic factors. The tumor microenvironment in GC appears to be chronically inflamed which promotes tumor progression and reduces the therapeutic opportunities. It has been suggested that inflammation assessment needs to be measured qualitatively and quantitatively, considering cell-infiltration types, availability of receptors to detect damage and pathogens, and presence or absence of aggressive H. pylori strains. Gastrointestinal epithelial cells express several Toll-like receptors and determine the first defensive line against pathogens, and have been also described as mediators of tumorigenesis. However, other molecules, such as cytokines related to inflammation and innate immunity, including immune checkpoint molecules, interferon-gamma pathway and NETosis have been associated with an increased risk of GC. Therefore, this review will explore innate immune activation in the context of premalignant lesions of the gastric epithelium and established gastric tumors.
Collapse
Affiliation(s)
- Franz Villarroel-Espindola
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Troy Ejsmentewicz
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Roxana Gonzalez-Stegmaier
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Roddy A Jorquera
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Esteban Salinas
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| |
Collapse
|
8
|
Teng ZH, Li WC, Li ZC, Wang YX, Han ZW, Zhang YP. Neutrophil extracellular traps-associated modification patterns depict the tumor microenvironment, precision immunotherapy, and prognosis of clear cell renal cell carcinoma. Front Oncol 2022; 12:1094248. [PMID: 36620592 PMCID: PMC9813599 DOI: 10.3389/fonc.2022.1094248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are web-like structures formed by neutrophils, and their main function is antimicrobial defense. Moreover, NETs have numerous roles in the pathogenesis and progression of cancers. However, the potential roles of NET-related genes in renal cell carcinoma remain unclear. In this study, we comprehensively investigated the NETs patterns and their relationships with tumor environment (TME), clinicopathological features, prognosis, and prediction of therapeutic benefits in the clear cell renal cell carcinoma (ccRCC) cohort. Methods We obtained the gene expression profiles, clinical characteristics, and somatic mutations of patients with ccRCC from The Cancer Genome Atlas database (TCGA), Gene Expression Omnibus (GEO), and ArrayExpress datasets, respectively. ConsensusCluster was performed to identify the NET clusters. The tumor environment scores were evaluated by the "ESTIMATE," "CIBERSORT," and ssGSEA methods. The differential analysis was performed by the "limma" R package. The NET-scores were constructed based on the differentially expressed genes (DEGs) among the three cluster patterns using the ssGSEA method. The roles of NET scores in the prediction of immunotherapy were investigated by Immunophenoscores (TCIA database) and validated in two independent cohorts (GSE135222 and IMvigor210). The prediction of targeted drug benefits was implemented using the "pRRophetic" and Gene Set Cancer Analysis (GSCA) datasets. Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to identify the reliability of the core genes' expression in kidney cancer cells. Results Three NET-related clusters were identified in the ccRCC cohort. The patients in Cluster A had more metabolism-associated pathways and better overall survival outcomes, whereas the patients in Cluster C had more immune-related pathways, a higher immune score, and a poorer prognosis than those in Cluster B. Based on the DEGs among different subtypes, patients with ccRCC were divided into two gene clusters. These gene clusters demonstrated significantly different immune statuses and clinical features. The NET scores were calculated based on the ten core genes by the Gene Set Variation Analysis (GSVA) package and then divided ccRCC patients into two risk groups. We observed that high NET scores were associated with favorable survival outcomes, which were validated in the E-MTAB-1980 dataset. Moreover, the NET scores were significantly associated with immune cell infiltration, targeted drug response, and immunotherapy benefits. Subsequently, we explored the expression profiles, methylation, mutation, and survival prediction of the 10 core genes in TCGA-KIRC. Though all of them were associated with survival information, only four out of the 10 core genes were differentially expressed genes in tumor samples compared to normal tissues. Finally, RT-PCR showed that MAP7, SLC16A12, and SLC27A2 decreased, while SLC3A1 increased, in cancer cells. Conclusion NETs play significant roles in the tumor immune microenvironment of ccRCC. Identifying NET clusters and scores could enhance our understanding of the heterogeneity of ccRCC, thus providing novel insights for precise individual treatment.
Collapse
|
9
|
Casarrubios M, Provencio M, Nadal E, Insa A, Del Rosario García-Campelo M, Lázaro-Quintela M, Dómine M, Majem M, Rodriguez-Abreu D, Martinez-Marti A, De Castro Carpeño J, Cobo M, López Vivanco G, Del Barco E, Bernabé R, Viñolas N, Barneto Aranda I, Massuti B, Sierra-Rodero B, Martinez-Toledo C, Fernández-Miranda I, Serna-Blanco R, Romero A, Calvo V, Cruz-Bermúdez A. Tumor microenvironment gene expression profiles associated to complete pathological response and disease progression in resectable NSCLC patients treated with neoadjuvant chemoimmunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005320. [PMID: 36171009 PMCID: PMC9528578 DOI: 10.1136/jitc-2022-005320] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy for non-small cell lung cancer (NSCLC) has improved pathological responses and survival rates compared with chemotherapy alone, leading to Food and Drug Administration (FDA) approval of nivolumab plus chemotherapy for resectable stage IB-IIIA NSCLC (AJCC 7th edition) without ALK or EGFR alterations. Unfortunately, a considerable percentage of tumors do not completely respond to therapy, which has been associated with early disease progression. So far, it is impossible to predict these events due to lack of knowledge. In this study, we characterized the gene expression profile of tumor samples to identify new biomarkers and mechanisms behind tumor responses to neoadjuvant chemoimmunotherapy and disease recurrence after surgery. METHODS Tumor bulk RNA sequencing was performed in 16 pretreatment and 36 post-treatment tissue samples from 41 patients with resectable stage IIIA NSCLC treated with neoadjuvant chemoimmunotherapy from NADIM trial. A panel targeting 395 genes related to immunological processes was used. Tumors were classified as complete pathological response (CPR) and non-CPR, based on the total absence of viable tumor cells in tumor bed and lymph nodes tested at surgery. Differential-expressed genes between groups and pathway enrichment analysis were assessed using DESeq2 and gene set enrichment analysis. CIBERSORTx was used to estimate the proportions of immune cell subtypes. RESULTS CPR tumors had a stronger pre-established immune infiltrate at baseline than non-CPR, characterized by higher levels of IFNG, GZMB, NKG7, and M1 macrophages, all with a significant area under the receiver operating characteristic curve (ROC) >0.9 for CPR prediction. A greater effect of neoadjuvant therapy was also seen in CPR tumors with a reduction of tumor markers and IFNγ signaling after treatment. Additionally, the higher expression of several genes, including AKT1, BST2, OAS3, or CD8B; or higher dendritic cells and neutrophils proportions in post-treatment non-CPR samples, were associated with relapse after surgery. Also, high pretreatment PD-L1 and tumor mutational burden levels influenced the post-treatment immune landscape with the downregulation of proliferation markers and type I interferon signaling molecules in surgery samples. CONCLUSIONS Our results reinforce the differences between CPR and non-CPR responses, describing possible response and relapse immune mechanisms, opening the possibility of therapy personalization of immunotherapy-based regimens in the neoadjuvant setting of NSCLC.
Collapse
Affiliation(s)
- Marta Casarrubios
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Mariano Provencio
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, L'Hospitalet, Barcelona, Spain
| | - Amelia Insa
- Medical Oncology, Fundación INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | - Manuel Dómine
- Medical Oncology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Margarita Majem
- Medical Oncology, Hospital de la Santa Creu i Sant Pau Servei de Oncologia Medica, Barcelona, Spain
| | - Delvys Rodriguez-Abreu
- Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas, Canarias, Spain
| | - Alex Martinez-Marti
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain, Barcelona, Barcelona, Spain
| | | | - Manuel Cobo
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | | | - Edel Del Barco
- Medical Oncology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Reyes Bernabé
- Medical Oncology, Hospital U. Virgen Rocio, Seville, Spain
| | | | | | | | - Belén Sierra-Rodero
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Cristina Martinez-Toledo
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Ismael Fernández-Miranda
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Roberto Serna-Blanco
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Atocha Romero
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Virginia Calvo
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| |
Collapse
|
10
|
Nakabo S, Kaplan MJ, Gupta S. Quantification of Neutrophils Undergoing NET Formation and Distinguishing Mechanisms of Neutrophil Cell Death by Use of a High-Throughput Method. Methods Mol Biol 2022; 2543:129-140. [PMID: 36087264 PMCID: PMC11407227 DOI: 10.1007/978-1-0716-2553-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neutrophils, the most abundant white blood cell type in humans, play a crucial role in innate host defenses. Recent studies have revealed additional key roles in the pathogenesis of cancer and autoimmune diseases through multiple mechanisms including the formation of neutrophil extracellular traps (NETs). Further research to expand the understanding of neutrophils' role in health and diseases is limited by lack of techniques to quantify neutrophils undergoing NET formation in an objective, reproducible, and efficient manner. In this chapter, we describe an automated high-throughput method to quantify NETting neutrophils in real time using a two-color, live-content imaging platform, the IncuCyte™S3 (Essen BioScience, Inc.) system, coupled to membrane integrity-dependent dual-dye approach to image intracellular and extracellular DNA. Based on characteristic differences in nuclear morphology and membrane integrity, this method may also be used to distinguish between different types of neutrophil cell death. This platform can help to assess neutrophil physiology and to develop and test therapeutic targets.
Collapse
Affiliation(s)
- Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarthak Gupta
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
11
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
12
|
Kalyanaraman B. Reactive oxygen species, proinflammatory and immunosuppressive mediators induced in COVID-19: overlapping biology with cancer. RSC Chem Biol 2021; 2:1402-1414. [PMID: 34704045 PMCID: PMC8496060 DOI: 10.1039/d1cb00042j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the published literature linking the different mechanisms focused on oxidative stress and inflammation that contribute to COVID-19 disease severity. The objective is to bring together potential proinflammatory mechanisms of COVID-19 pathogenesis and address mitigation strategies using naturally occurring compounds and FDA-approved drugs. Outstanding questions addressed include the following: What is the mechanistic basis for linking enhanced vulnerability in COVID-19 to increased oxidative damage and proinflammatory mediators (e.g., cytokines), especially in high-risk people? Can we repurpose anti-inflammatory and immunomodulatory agents to mitigate inflammation in COVID-19 patients? How does 2-deoxy-d-glucose function as an anti-COVID drug? COVID-19, cancer biology, and immunotherapy share many mechanistic similarities. Repurposing drugs that already have been FDA-approved for mitigating inflammation and immunosuppression in cancer may be a way to counteract disease severity, progression, and chronic inflammation in COVID-19. What are the long-term effects of reactive oxygen species-inducing immune cells and sustained inflammation in so-called long-haulers (long COVID) after recovery from COVID-19? Can we use mitochondria-targeted agents prophylactically to prevent inflammation and boost immunity in long-haulers? Addressing the oxidative chemical biology of COVID-19 and the mechanistic commonalities with cancer may provide new insights potentially leading to appropriate clinical trials and new treatments.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Cancer Center, Center for Disease Prevention Research, Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee WI 53226 USA
| |
Collapse
|
13
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
14
|
Raigon Ponferrada A, Guerrero Orriach JL, Molina Ruiz JC, Romero Molina S, Gómez Luque A, Cruz Mañas J. Breast Cancer and Anaesthesia: Genetic Influence. Int J Mol Sci 2021; 22:7653. [PMID: 34299272 PMCID: PMC8307639 DOI: 10.3390/ijms22147653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the leading cause of mortality in women. It is a heterogeneous disease with a high degree of inter-subject variability even in patients with the same type of tumor, with individualized medicine having acquired significant relevance in this field. The clinical and morphological heterogeneity of the different types of breast tumors has led to a diversity of staging and classification systems. Thus, these tumors show wide variability in genetic expression and prognostic biomarkers. Surgical treatment is essential in the management of these patients. However, the perioperative period has been found to significantly influence survival and cancer recurrence. There is growing interest in the pro-tumoral effect of different anaesthetic and analgesic agents used intraoperatively and their relationship with metastatic progression. There is cumulative evidence of the influence of anaesthetic techniques on the physiopathological mechanisms of survival and growth of the residual neoplastic cells released during surgery. Prospective randomized clinical trials are needed to obtain quality evidence on the relationship between cancer and anaesthesia. This document summarizes the evidence currently available about the effects of the anaesthetic agents and techniques used in primary cancer surgery and long-term oncologic outcomes, and the biomolecular mechanisms involved in their interaction.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Juan Carlos Molina Ruiz
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Aurelio Gómez Luque
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| |
Collapse
|
15
|
A innovative prognostic symbol based on neutrophil extracellular traps (NETs)-related lncRNA signature in non-small-cell lung cancer. Aging (Albany NY) 2021; 13:17864-17879. [PMID: 34257164 PMCID: PMC8312458 DOI: 10.18632/aging.203289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Neutrophil extracellular traps (NETs) are closely related to cancer progression. NETs-related lncRNAs play crucial roles in non-small-cell lung cancer (NSCLC) but there have been no systematic studies regarding NETs-related long noncoding RNA (lncRNA) signatures to forecast the prognosis of NSCLC patients. It’s essential to build commensurate NETs-related lncRNA signatures. The expression profiles of prognostic mRNAs and lncRNAs and relevant clinical data of NSCLC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The NETs-related genes came from the results of our transcriptome RNA microarray data. The co-expression network of lncRNAs and NETs-related genes was structured to confirm NETs-related lncRNAs. The 19 lncRNAs correlated with overall survival (OS) were selected by exploiting univariate Cox regression (P < 0.05). Lasso regression and multivariate Cox regression (P < 0.05) were utilized to develop a 12-NETs-related lncRNA signature. We established a risk score based on the signature, which suggested that patients in the high-risk group displayed significantly shorter OS than patients in the low-risk group (P < 0.0001, P = 0.0023 respectively in the two cohorts). The risk score worked as an independent predictive factor for OS in both univariate and multivariate Cox regression analyses (HR> 1, P< 0.001). Additionally, by RT-qPCR, we confirmed that NSCLC cell lines have higher levels of the three adverse prognostic NETs-related lncRNAs than normal lung cells. The expression of lncRNAs significantly increases after NETs stimulation. In short, the 12 NETs-related lncRNAs and their model could play effective roles as molecular markers in predicting survival for NSCLC patients.
Collapse
|
16
|
Lu H, Lin J, Xu C, Sun M, Zuo K, Zhang X, Li M, Huang H, Li Z, Wu W, Feng B, Liu Z. Cyclosporine modulates neutrophil functions via the SIRT6-HIF-1α-glycolysis axis to alleviate severe ulcerative colitis. Clin Transl Med 2021; 11:e334. [PMID: 33634990 PMCID: PMC7882115 DOI: 10.1002/ctm2.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclosporine A (CsA) is routinely used to treat patients with steroid-refractory acute severe ulcerative colitis (ASUC). Here, we studied the underlying mechanisms of CsA-mediated alleviation in ASUC patients. METHODS Neutrophil functions including expression of cytokines, apoptosis, and migration were measured by qRT-PCR, flow cytometry, and Transwell assay. Dynamic changes of glycolysis and tricarboxylic acid (TCA) cycle were measured by a Seahorse extracellular flux analyzer. Gene differences were determined and verified by RNA sequencing, qRT-PCR, and Western blotting. Small interfering RNA and inhibitors were used to knock down Sirtuin 6 (SIRT6) in HL-60 cells and block expression of SIRT6, hypoxia-inducible factor-1α (HIF-1α), and pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4) in neutrophils. RESULTS We found that HIF-1α expression and glycolysis significantly increased, while the release of IL-8, myeloperoxidase (MPO) and reactive oxygen species (ROS), the apoptosis, and ability of migration markedly decreased in neutrophils of ASUC patients who responded to CsA (Response group) compared with those who did not respond to CsA (Nonresponse group). We also observed that CsA-induced functional alternation of neutrophils was initiated through suppressing SIRT6 expression, which is responsible for expression of the downstream signaling molecules (e.g., HIF-1α, PFKFB3) and PDK4 ubiquitination, leading to fueling neutrophil glycolysis and TCA cycle. Furthermore, blockage of SIRT6 signaling demonstrated to be the same functional changes as CsA to decrease the migration of neutrophils. CONCLUSIONS The data reveal a novel mechanism of CsA in alleviating ASUC by promoting neutrophil HIF-1α expression and restricting excessive neutrophil activation in a SIRT6-HIF-1α-glycolysis axis, suggesting SIRT6 as a candidate target for maintaining mucosal homeostasis and treating intestinal inflammation.
Collapse
Affiliation(s)
- Huiying Lu
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
| | - Jian Lin
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
| | - Chunjin Xu
- Department of GastroenterologyFirst People's Hospital of Shangqiu City Affiliated to Xinxiang Medical UniversityShangqiuChina
| | - Mingming Sun
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
| | - Keqiang Zuo
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
| | - Xiaoping Zhang
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
| | - Mingsong Li
- Department of GastroenterologyThird Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hailiang Huang
- Analytic and Translational Genetics UnitMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Zhong Li
- Shanghai Cell Therapy GroupShanghaiChina
| | - Wei Wu
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
| | - Baisui Feng
- Department of GastroenterologySecond Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhanju Liu
- Center for IBD ResearchDepartment of GastroenterologyShanghai Tenth People's Hospital of Tongji UniversityShanghaiChina
- Department of GastroenterologySecond Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
17
|
Wang W, Zhang J, Zheng N, Li L, Wang X, Zeng Y. The role of neutrophil extracellular traps in cancer metastasis. Clin Transl Med 2020; 10:e126. [PMID: 32961033 PMCID: PMC7580875 DOI: 10.1002/ctm2.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jiayang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nanan Zheng
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|