1
|
Zhang H, Wang Z, Wu J, Zheng YQ, Zhao Q, He S, Jiang H, Jiang C, Wang T, Liu Y, Cui L, Guo H, Yi J, Jin H, Xie C, Li M, Li J, Wang X, Xia L, Zhang XS, Xia X. Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity. J Clin Invest 2025; 135:e180622. [PMID: 39817453 PMCID: PMC11735096 DOI: 10.1172/jci180622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025] Open
Abstract
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity. STING activation in endothelium promoted vessel normalization and CD8+ T cell infiltration - which required type I IFN (IFN-I) signaling- but not IFN-γ or CD4+ T cells. Rather than an upstream adaptor for inducing IFN-I signaling, STING acted downstream of interferon-α/β receptor (IFNAR) in endothelium for the JAK1-STAT signaling activation. Mechanistically, IFN-I stimulation induced JAK1-STING interaction and promoted JAK1 phosphorylation, which involved STING palmitoylation at the Cysteine 91 site but not its C-terminal tail (CTT) domain. Endothelial STING and JAK1 expression was significantly associated with immune cell infiltration in patients with cancer, and STING palmitoylation level correlated positively with CD8+ T cell infiltration around STING-positive blood vessels in tumor tissues from patients with melanoma. In summary, our findings uncover a previously unrecognized function of STING in regulating JAK1/STAT activation downstream of IFN-I stimulation and provide a new insight for future design and clinical application of STING agonists for cancer therapy.
Collapse
Affiliation(s)
- Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahong Yi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Li X, Yu X, Bi J, Jiang X, Zhang L, Li Z, Shao M. Integrating single-cell and spatial transcriptomes reveals COL4A1/2 facilitates the spatial organisation of stromal cells differentiation in breast phyllodes tumours. Clin Transl Med 2024; 14:e1611. [PMID: 38481388 PMCID: PMC10938066 DOI: 10.1002/ctm2.1611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Breast phyllodes tumours (PTs) are a unique type of fibroepithelial neoplasms with metastatic potential and recurrence tendency. However, the precise nature of heterogeneity in breast PTs remains poorly understood. This study aimed to elucidate the cell subpopulations composition and spatial structure and investigate diagnostic markers in the pathogenesis of PTs. METHODS We applied single-cell RNA sequencing and spatial transcriptomes on tumours and adjacent normal tissues for integration analysis. Immunofluorescence experiments were conducted to verify the tissue distribution of cells. Tumour cells from patients with PTs were cultured to validate the function of genes. To validate the heterogeneity, the epithelial and stromal components of tumour tissues were separated using laser capture microdissection, and microproteomics data were obtained using data-independent acquisition mass spectrometry. The diagnostic value of genes was assessed using immunohistochemistry staining. RESULTS Tumour stromal cells harboured seven subpopulations. Among them, a population of widely distributed cancer-associated fibroblast-like stroma cells exhibited strong communications with epithelial progenitors which underwent a mesenchymal transition. We identified two stromal subpopulations sharing epithelial progenitors and mesenchymal markers. They were inferred to further differentiate into transcriptionally active stromal subpopulations continuously expressing COL4A1/2. The binding of COL4A1/2 with ITGA1/B1 facilitated a growth pattern from the stroma towards the surrounding glands. Furthermore, we found consistent transcriptional changes between intratumoural heterogeneity and inter-patient heterogeneity by performing microproteomics studies on 30 samples from 11 PTs. The immunohistochemical assessment of 97 independent cohorts identified that COL4A1/2 and CSRP1 could aid in accurate diagnosis and grading. CONCLUSIONS Our study demonstrates that COL4A1/2 shapes the spatial structure of stromal cell differentiation and has important clinical implications for accurate diagnosis of breast PTs.
Collapse
Affiliation(s)
- Xia Li
- Department of PathologyShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of PathologyThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| | - Xuewen Yu
- Department of PathologyShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of PathologyThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| | - Jiaxin Bi
- Department of PathologyShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of PathologyThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| | - Xu Jiang
- Department of PathologyShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of PathologyThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| | - Lu Zhang
- Department of PathologyShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of PathologyThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| | - Zhixin Li
- Department of SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of SurgeryThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| | - Mumin Shao
- Department of PathologyShenzhen Traditional Chinese Medicine HospitalShenzhenP.R. China
- Department of PathologyThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenP.R. China
| |
Collapse
|