1
|
Chen Z, Ji W, Feng W, Cui J, Wang Y, Li F, Chen J, Guo Z, Xia L, Zhu X, Niu X, Zhang Y, Li Z, Wong AST, Lu S, Xia W. PTPRT loss enhances anti-PD-1 therapy efficacy by regulation of STING pathway in non-small cell lung cancer. Sci Transl Med 2024; 16:eadl3598. [PMID: 39231239 DOI: 10.1126/scitranslmed.adl3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
With the revolutionary progress of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, identifying patients with cancer who would benefit from ICIs has become critical and urgent. Here, we report protein tyrosine phosphatase receptor type T (PTPRT) loss as a precise and convenient predictive marker independent of PD-L1 expression for anti-PD-1/PD-L1 axis therapy. Anti-PD-1/PD-L1 axis treatment markedly increased progression-free survival in patients with PTPRT-deficient tumors. PTPRT-deficient tumors displayed cumulative DNA damage, increased cytosolic DNA release, and higher tumor mutation burden. Moreover, the tyrosine residue 240 of STING was identified as a direct substrate of PTPRT. PTPRT loss elevated phosphorylation of STING at Y240 and thus inhibited its proteasome-mediated degradation. PTPRT-deficient tumors released more IFN-β, CCL5, and CXCL10 by activation of STING pathway and increased immune cell infiltration, especially of CD8 T cells and natural killer cells, ultimately enhancing the efficacy of anti-PD-1 therapy in multiple subcutaneous and orthotopic tumor mouse models. The response of PTPRT-deficient tumors to anti-PD-1 therapy depends on the tumor-intrinsic STING pathway. In summary, our findings reveal the mechanism of how PTPRT-deficient tumors become sensitive to anti-PD-1 therapy and highlight the biological function of PTPRT in innate immunity. Considering the prevalence of PTPRT mutations and negative expression, this study has great value for patient stratification and clinical decision-making.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingchuan Cui
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuchen Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Li
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziheng Guo
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Yu Y, Jia X, Chen S, Lai Z, Deng H, Mo Y, Xie X, Wang Z, Lin R, Ouyang W, Yao H, Wu J. Deciphering the role of apoptosis signature on the immune dynamics and therapeutic prognosis in breast cancer: Implication for immunotherapy. Front Genet 2024; 15:1332935. [PMID: 38756447 PMCID: PMC11097162 DOI: 10.3389/fgene.2024.1332935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Background: In breast cancer oncogenesis, the precise role of cell apoptosis holds untapped potential for prognostic and therapeutic insights. Thus, it is important to develop a model predicated for breast cancer patients' prognosis and immunotherapy response based on apoptosis-related signature. Methods: Our approach involved leveraging a training dataset from The Cancer Genome Atlas (TCGA) to construct an apoptosis-related gene prognostic model. The model's validity was then tested across several cohorts, including METABRIC, Sun Yat-sen Memorial Hospital Sun Yat-sen University (SYSMH), and IMvigor210, to ensure its applicability and robustness across different patient demographics and treatment scenarios. Furthermore, we utilized Quantitative Polymerase Chain Reaction (qPCR) analysis to explore the expression patterns of these model genes in breast cancer cell lines compared to immortalized mammary epithelial cell lines, aiming to confirm their differential expression and underline their significance in the context of breast cancer. Results: Through the development and validation of our prognostic model based on seven apoptosis-related genes, we have demonstrated its substantial predictive power for the survival outcomes of breast cancer patients. The model effectively stratified patients into high and low-risk categories, with high-risk patients showing significantly poorer overall survival in the training cohort and across all validation cohorts. Importantly, qPCR analysis confirmed that the genes constituting our model indeed exhibit differential expression in breast cancer cell lines when contrasted with immortalized mammary epithelial cell lines. Conclusion: Our study establishes a groundbreaking prognostic model using apoptosis-related genes to enhance the precision of breast cancer prognosis and treatment, particularly in predicting immunotherapy response.
Collapse
Affiliation(s)
- Yunfang Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueyuan Jia
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Sunyu Chen
- School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zijia Lai
- School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Heran Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Mo
- School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xinxin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehua Wang
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Hong Kong Baptist University, Zhuhai, China
| | - Ruichong Lin
- School of Computer Engineering, Guangzhou Huali College, Guangzhou, China
- Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Chen C, Liu H, Li Y, Xu Q, Liu J. Downregulation of PTPRT elevates the expression of survivin and promotes the proliferation, migration, and invasion of lung adenocarcinoma. BMC Cancer 2024; 24:63. [PMID: 38216925 PMCID: PMC10785488 DOI: 10.1186/s12885-024-11840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Receptor-type tyrosine-protein phosphatase T (PTPRT) is a transmembrane protein that is involved in cell adhesion. We previously found that PTPRT was downregulated in multiple cancer types and the mutation of PTPRT was associated with cancer early metastasis. However, the impacts of PTPRT downregulation on tumour proliferation, invasion, and clinical interventions such as immune checkpoint inhibitor (ICI) therapies remained largely unknown. METHODS Gene expression data of non-small cell lung cancer (NSCLC) samples from The Cancer Genome Atlas database were downloaded and used to detect the differential expressed genes between PTPRT-high and PTPRT-low subgroups. Knockdown and overexpress of PTPRT in lung cancer cell lines were performed to explore the function of PTPRT in vitro. Western blot and qRT-PCR were used to evaluate the expression of cell cycle-related genes. CCK-8 assays, wound-healing migration assay, transwell assay, and colony formation assay were performed to determine the functional impacts of PTPRT on cell proliferation, migration, and invasion. KM-plotter was used to explore the significance of selected genes on patient prognosis. RESULTS PTPRT was found to be downregulated in tumours and lung cancer cell lines compared to normal samples. Cell cycle-related genes (BIRC5, OIP5, and CDCA3, etc.) were specifically upregulated in PTPRT-low lung adenocarcinoma (LUAD). Modulation of PTPRT expression in LUAD cell lines affected the expression of BIRC5 (survivin) significantly, as well as the proliferation, migration, and invasion of tumour cells. In addition, low PTPRT expression level was correlated with worse prognosis of lung cancer and several other cancer types. Furthermore, PTPRT downregulation was associated with elevated tumour mutation burden and tumour neoantigen burden in lung cancer, indicating the potential influence on tumour immunogenicity. CONCLUSION Our findings uncovered the essential roles of PTPRT in the regulation of proliferation, migration, and invasion of LUAD, and highlighted the clinical significance of PTPRT downregulation in lung cancer.
Collapse
Affiliation(s)
- Chao Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China.
| | - Haozhen Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Yanling Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Qumiao Xu
- BGI Research, Hangzhou, 310030, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China.
| |
Collapse
|
4
|
A Comprehensive Analysis of Programmed Cell Death-Associated Genes for Tumor Microenvironment Evaluation Promotes Precise Immunotherapy in Patients with Lung Adenocarcinoma. J Pers Med 2023; 13:jpm13030476. [PMID: 36983658 PMCID: PMC10058589 DOI: 10.3390/jpm13030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a new hot spot in tumor therapy. Programmed cell death has an important role in the prognosis. We explore a programmed cell death gene prognostic model associated with survival and immunotherapy prediction via computational algorithms. Patient details were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. We used LASSO algorithm and multiple-cox regression to establish a programmed cell death-associated gene prognostic model. Further, we explored whether this model could evaluate the sensitivity of patients to anti-PD-1/PD-L1. In total, 1342 patients were included. We constructed a programmed cell death model in TCGA cohorts, and the overall survival (OS) was significantly different between the high- and low-risk score groups (HR 2.70; 95% CI 1.94–3.75; p < 0.0001; 3-year OS AUC 0.71). Specifically, this model was associated with immunotherapy progression-free survival benefit in the validation cohort (HR 2.42; 95% CI 1.59–3.68; p = 0.015; 12-month AUC 0.87). We suggest that the programmed cell death model could provide guidance for immunotherapy in LUAD patients.
Collapse
|
5
|
Association of PTPRT Mutations with Cancer Metastasis in Multiple Cancer Types. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9386477. [PMID: 35789644 PMCID: PMC9250438 DOI: 10.1155/2022/9386477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
Abstract
Metastasis is one of the characteristics of advanced cancer and the primary cause of cancer-related deaths from cancer, but the mechanism underlying metastasis is unclear, and there is a lack of metastasis markers. PTPRT is a protein-coding gene involved in both signal transduction and cellular adhesion. It is also known as a tumor suppressor gene that inhibits cell malignant proliferation by inhibiting the STAT3 pathway. Recent studies have reported that PTPRT is involved in the early metastatic seeding of colorectal cancer; however, the correlation between PTPRT and metastasis in other types of cancer has not been revealed. A combined analysis using a dataset from the genomics evidence neoplasia information exchange (GENIE) and cBioPortal revealed that PTPRT mutation is associated with poor prognosis in pan-cancer and non-small-cell lung cancer. The mutations of PTPRT or “gene modules” containing PTPRT are significantly enriched in patients with metastatic cancer in multiple cancers, suggesting that the PTPRT mutations serve as potential biomarkers of cancer metastasis.
Collapse
|
6
|
Diefenbach RJ, Lee JH, Stewart A, Menzies AM, Carlino MS, Saw RPM, Stretch JR, Long GV, Scolyer RA, Rizos H. Anchored Multiplex PCR Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Front Oncol 2022; 12:820510. [PMID: 35494035 PMCID: PMC9039342 DOI: 10.3389/fonc.2022.820510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of melanoma mutations using circulating tumor DNA (ctDNA) is a potential alternative to using genomic DNA from invasive tissue biopsies. To date, mutations in the GC-rich TERT promoter region, which is commonly mutated in melanoma, have been technically difficult to detect in ctDNA using next-generation sequencing (NGS) panels. In this study, we developed a custom melanoma NGS panel for detection of ctDNA, which encompasses the top 15 gene mutations in melanoma including the TERT promoter. We analyzed 21 stage III and IV melanoma patient samples who were treatment-naïve or on therapy. The overall detection rate of the custom panel, based on BRAF/NRAS/TERT promoter mutations, was 14/21 (67%) patient samples which included a TERT C250T mutation in one BRAF and NRAS mutation negative sample. A BRAF or NRAS mutation was detected in the ctDNA of 13/21 (62%) patients while TERT promoter mutations were detected in 10/21 (48%) patients. Co-occurrence of TERT promoter mutations with BRAF or NRAS mutations was found in 9/10 (90%) patients. The custom ctDNA panel showed a concordance of 16/21 (76%) with tissue based-detection and included 12 BRAF/NRAS mutation positive and 4 BRAF/NRAS mutation negative patients. The ctDNA mutation detection rate for stage IV was 12/16 (75%) and for stage III was 1/5 (20%). Based on BRAF, NRAS and TERT promoter mutations, the custom melanoma panel displayed a limit of detection of ~0.2% mutant allele frequency and showed significant correlation with droplet digital PCR. For one patient, a novel MAP2K1 H119Y mutation was detected in an NRAS/BRAF/TERT promoter mutation negative background. To increase the detection rate to >90% for stage IV melanoma patients, we plan to expand our custom panel to 50 genes. This study represents one of the first to successfully detect TERT promoter mutations in ctDNA from cutaneous melanoma patients using a targeted NGS panel.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jenny H Lee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Zhou H, Lin L, Qin T, Ren W, Tan Y, Yang Q, Xu H, Xie X, Chen Y, Liu S, Li X, Li Z, Hu H, Yu Y, Yao H. Neoadjuvant camrelizumab, nab-paclitaxel, and carboplatin in patients with stage IB-IIIA non-small cell lung cancer (NANE-LC): a study protocol of prospective, single-arm, multicenter, phase II study. J Thorac Dis 2022; 13:6468-6475. [PMID: 34992825 PMCID: PMC8662502 DOI: 10.21037/jtd-21-1022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Background Previous studies have shown that neoadjuvant immune checkpoint inhibitors (ICIs) combined with chemotherapy in patients with stage IB–IIIA non-small cell lung cancer (NSCLC) significantly improved the major pathological response (MPR) and the pathological complete response (pCR) rates. However, high-level evidence-based medical data confirming this effect are still lacking. In addition, there is an urgent need to develop an appropriate strategy to predict the benefit for patients receiving ICIs. In this study, we describe an ongoing study on the effect of neoadjuvant therapy with camrelizumab, nab-paclitaxel, and carboplatin on stage IB–IIIA NSCLC patients. The aim of this study is to establish a multiomics artificial intelligence system for predicting neoadjuvant therapy efficacy and assisting decision-making. Methods This prospective, single-arm, multicenter, phase II trial will enroll a total of 40 patients who will undergo surgery after three cycles of neoadjuvant therapy with camrelizumab, nab-paclitaxel, and carboplatin. The MPR rate is the primary endpoint, while the rates of pCR, complete resection, objective response, disease-free survival (DFS), adverse events (AEs), and quality of life (QOL) are secondary endpoints. Exploratory endpoints will serve to establish a multiomics artificial intelligence system for neoadjuvant therapy effect prediction and decision-making assistance based on radiomics, metabolism, genetic, and clinic-pathological characteristics and to explore the mechanisms of drug resistance. Discussion The efficacy of ICIs is influenced by many factors, including patient’s driver genes and smoking status. Thus, further subgroup analysis is needed. This study will indicate if our new multiomics artificial intelligence system constitutes a valid strategy for neoadjuvant therapy effect prediction and decision-making assistance in the context of neoadjuvant camrelizumab, nab-paclitaxel, and carboplatin treatment for patients with stage IB–IIIA NSCLC. Trial Registration This trial has been registered at ClinicalTrials.gov (identification number: NCT04541251).
Collapse
Affiliation(s)
- Haiyu Zhou
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Division of Thoracic Surgery, Jiangxi Lung Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Lili Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujie Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huixin Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinxin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongjian Chen
- Department of Medical Oncology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengbo Liu
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xing Li
- Department of Medical Oncology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,AI & Digital Media Concentration Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Zhang W, Shi F, Kong Y, Li Y, Sheng C, Wang S, Wang Q. Association of PTPRT mutations with immune checkpoint inhibitors response and outcome in melanoma and non-small cell lung cancer. Cancer Med 2021; 11:676-691. [PMID: 34862763 PMCID: PMC8817076 DOI: 10.1002/cam4.4472] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/13/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Protein tyrosine phosphatase receptor type T (PTPRT), which is a well‐known phosphatase and mutates frequently in melanoma and non‐small cell lung cancer (NSCLC). Our research aims to elucidate its mutation association with immune checkpoint inhibitors (ICI) efficacy. Methods We integrated whole‐exome sequencing (WES)‐based somatic mutation profiles and clinical characteristics of 631 melanoma samples received ICI agents from eight studies and 109 NSCLC samples from two studies. For validation, 321 melanoma and 350 NSCLC immunotherapy samples with targeted next‐generation sequencing (NGS) were employed. Besides, an independent NSCLC cohort contained 240 samples was also collected for further corroboration. Distinct immune infiltration was evaluated according to the PTPRT mutational status. Results In the WES melanoma cohort, patients with PTPRT mutations harbored a significantly elevated ICI response rate (40.5% vs. 28.6%, p = 0.036) and a prolonged survival outcome (35.3 vs. 24.9 months, p = 0.006). In the WES NSCLC cohort, the favorable response and immunotherapy survival were also observed in PTPRT‐mutated patients (p = 0.036 and 0.019, respectively). For the validation cohorts, the associations of PTRPT mutations with better prognoses were identified in melanoma, NSCLC, and pan‐cancer patients with targeted‐NGS (all p < 0.05). Moreover, immunology analyses showed the higher mutation burden, increased lymphocyte infiltration, decreased‐ activated‐stroma, and immune response pathways were detected in patients with PTPRT mutations. Conclusion Our investigation indicates that PTPRT mutations may be considered as a potential indicator for assessing ICI efficacy in melanoma and NSCLC, even across multiple cancers. Further prospective validation cohorts are warranted.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Yuting Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| |
Collapse
|