1
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Kabłak-Ziembicka A, Badacz R, Okarski M, Wawak M, Przewłocki T, Podolec J. Cardiac microRNAs: diagnostic and therapeutic potential. Arch Med Sci 2023; 19:1360-1381. [PMID: 37732050 PMCID: PMC10507763 DOI: 10.5114/aoms/169775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs are small non-coding post-translational biomolecules which, when expressed, modify their target genes. It is estimated that microRNAs regulate production of approximately 60% of all human proteins and enzymes that are responsible for major physiological processes. In cardiovascular disease pathophysiology, there are several cells that produce microRNAs, including endothelial cells, vascular smooth muscle cells, macrophages, platelets, and cardiomyocytes. There is a constant crosstalk between microRNAs derived from various cell sources. Atherosclerosis initiation and progression are driven by many pro-inflammatory and pro-thrombotic microRNAs. Atherosclerotic plaque rupture is the leading cause of cardiovascular death resulting from acute coronary syndrome (ACS) and leads to cardiac remodeling and fibrosis following ACS. MicroRNAs are powerful modulators of plaque progression and transformation into a vulnerable state, which can eventually lead to plaque rupture. There is a growing body of evidence which demonstrates that following ACS, microRNAs might inhibit fibroblast proliferation and scarring, as well as harmful apoptosis of cardiomyocytes, and stimulate fibroblast reprogramming into induced cardiac progenitor cells. In this review, we focus on the role of cardiomyocyte-derived and cardiac fibroblast-derived microRNAs that are involved in the regulation of genes associated with cardiomyocyte and fibroblast function and in atherosclerosis-related cardiac ischemia. Understanding their mechanisms may lead to the development of microRNA cocktails that can potentially be used in regenerative cardiology.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Michał Okarski
- Student Scientific Group of Modern Cardiac Therapy at the Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Wawak
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Tadeusz Przewłocki
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Podolec
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| |
Collapse
|
3
|
Stępniewski J, Jeż M, Dulak J. Generation of miR-15a/16-1 cluster-deficient human induced pluripotent stem cell line (DMBi001-A-2) using CRISPR/Cas9 gene editing. Stem Cell Res 2023; 68:103046. [PMID: 36801567 DOI: 10.1016/j.scr.2023.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
miR-15a/16-1 cluster, composed of MIR15A and MIR16-1 genes located in close proximity on chromosome 13 was described to regulate post-natal cell cycle withdrawal of cardiomyocytes in mice. In humans, on the other hand, the level of miR-15a-5p and miR-16-p was negatively associated with the severity of cardiac hypertrophy. Therefore, to better understand the role of these microRNAs in human cardiomyocytes in regard to their proliferative potential and hypertrophic growth, we generated hiPSC line with complete deletion of miR-15a/16-1 cluster using CRISPR/Cas9 gene editing. Obtained cells demonstrate expression of pluripotency markers, differentiation capacity into all three germ layers and normal karyotype.
Collapse
Affiliation(s)
- Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Mateusz Jeż
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Zhou M, Zhao W, Xue W, Liu J, Yu Z. Potential antihypertensive mechanism of egg white-derived peptide QIGLF revealed by proteomic analysis. Int J Biol Macromol 2022; 218:439-446. [PMID: 35878667 DOI: 10.1016/j.ijbiomac.2022.07.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Previous work has shown that egg white-derived peptide QIGLF has significant in vivo antihypertensive activity. This study aimed to clarify the antihypertensive mechanisms of QIGLF on spontaneously hypertensive rats (SHRs) by a serum proteomic approach. Here, the tandem mass tag (TMT) quantitative proteomic was performed to discover serum protein changes in SHRs with QIGLF. As a result, SHRs with 4 weeks of QIGLF treatment have distinct serum protein expression profiles by principal component and Pearson's correlation coefficient analysis. Based on Gene Ontology (GO) annotation, oxygen transport and organelle fusion were found to be a regulated major biological process. Besides, aldosterone regulated sodium reabsorption, mitophagy, gap junction, and tight junction were significantly regulated based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. QIGLF might exert antihypertensive effects in the SHRs by inhibiting Na+ reabsorption and oxidative stress, restoring gap junction and tight junction.
Collapse
Affiliation(s)
- Mingjie Zhou
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Wenjun Xue
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
6
|
de Gonzalo‐Calvo D, Pérez‐Boza J, Curado J, Devaux Y. Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin Transl Med 2022; 12:e585. [PMID: 35167732 PMCID: PMC8846372 DOI: 10.1002/ctm2.585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- David de Gonzalo‐Calvo
- Translational Research in Respiratory MedicineUniversity Hospital Arnau de Vilanova and Santa MariaLleidaSpain
- CIBER of Respiratory Diseases (CIBERES)Institute of Health Carlos IIIMadridSpain
| | | | | | - Yvan Devaux
- Cardiovascular Research UnitLuxembourg Institute of HealthLuxembourgLuxembourg
| | | |
Collapse
|
7
|
Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res 2021; 55:853-864. [PMID: 34323631 DOI: 10.1080/10715762.2021.1962009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma is one of the most frequent malignant tumors derived from the brain in adults with very poor prognosis. Ferroptosis is implicated in the initiation and progression of various tumors, including the glioblastoma. The present study aims to investigate the function of microRNA (miR)-670-3p in glioblastoma, and tries to demonstrate whether ferroptosis is involved in this process. Human glioblastoma cell lines, U87MG and A172, were transfected with the inhibitor, mimic and matched negative controls of miR-670-3p to manipulate intracellular miR-670-3p level. To validate the involvement of ferroptosis in miR-670-3p inhibitor-mediated tumor suppressive effects, ferrostain-1 and liproxstatin-1 were used to inhibit ferroptosis in the presence of miR-670-3p inhibitor. In addition, the small interfering RNA against acyl-CoA synthase long chain family member 4 (ACSL4) was used to knock down endogenous ACSL4 expression. To validate the combined effects between miR-670-3p inhibitor and temozolomide (TMZ), cells were pretreated with TMZ and then transfected with or without miR-670-3p inhibitor. miR-670-3p level was elevated in human glioblastoma, but decreased upon ferroptotic stimulation. miR-670-3p inhibitor suppressed, while miR-670-3p mimic promoted glioblastoma cell growth through modulating ferroptosis. Mechanistically, ACSL4 was required for the regulation on ferroptosis and growth of glioblastoma cells by miR-670-3p. Moreover, U87MG and A172 cells treated with miR-670-3p inhibitor showed an increased chemosensitivity to TMZ. We prove that miR-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4, and that inhibiting miR-670-3p can be an alternative, at least adjuvant strategy to treat glioblastoma.
Collapse
Affiliation(s)
- Chong Bao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu-Yue Xian
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|