1
|
Guo L, Kong D, Liu J, Luo L, Zheng W, Chen C, Sun S. Searching for Essential Genes and Targeted Drugs Common to Breast Cancer and Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:238-255. [PMID: 37157194 DOI: 10.2174/1386207326666230508113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND It is documented that osteoarthritis can promote the progression of breast cancer (BC). OBJECTIVE This study aims to search for the essential genes associated with breast cancer (BC) and osteoarthritis (OA), explore the relationship between epithelial-mesenchymal transition (EMT)- related genes and the two diseases, and identify the candidate drugs. METHODS The genes related to both BC and OA were determined by text mining. Protein-protein Interaction (PPI) analysis was carried out, and as a result, the exported genes were found to be related to EMT. PPI and the correlation of mRNA of these genes were also analyzed. Different kinds of enrichment analyses were performed on these genes. A prognostic analysis was performed on these genes for examining their expression levels at different pathological stages, in different tissues, and in different immune cells. Drug-gene interaction database was employed for potential drug discovery. RESULTS A total number of 1422 genes were identified as common to BC and OA and 58 genes were found to be related to EMT. We found that HDAC2 and TGFBR1 were significantly poor in overall survival. High expression of HDAC2 plays a vital role in the increase of pathological stages. Four immune cells might play a role in this process. Fifty-seven drugs were identified that could potentially have therapeutic effects. CONCLUSION EMT may be one of the mechanisms by which OA affects BC. Using the drugs can have potential therapeutic effects, which may benefit patients with both diseases and broaden the indications for drug use.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Lan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
2
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
3
|
Pregnancy-Specific Glycoprotein 9 Enhances Store-Operated Calcium Entry and Nitric Oxide Release in Human Umbilical Vein Endothelial Cells. Diagnostics (Basel) 2023; 13:diagnostics13061134. [PMID: 36980442 PMCID: PMC10047280 DOI: 10.3390/diagnostics13061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
We explored changes in pregnancy-specific glycoprotein 9 (PSG9) levels in the serum of patients with preeclampsia and the effects and underlying mechanisms of PSG9 effects on calcium (Ca2+) homeostasis and nitric oxide (NO) release in human umbilical vein endothelial cells (HUVECs). Western blotting was used to detect protein expression levels, and an NO fluorescence probe was used to examine NO production. Intracellular Ca2+ concentrations were measured using a Ca2+-sensitive fluorescent dye under a fluorescence microscope. Compared with those in healthy pregnant women, serum PSG9 levels were significantly decreased in patients with preeclampsia. PSG9 (0.1 μg/mL) treatment of HUVECs significantly enhanced the expression levels of store-operated calcium entry (SOCE) channel proteins Orai1 and Orai2, but not Orai3, and of endothelial nitric oxide synthase (eNOS) and NO production. Pretreatment with an inhibitor of SOCE (BTP2) abolished PSG9-enhanced Orai1, Orai2, and eNOS expression levels and NO production in HUVECs. The mechanisms underlying SOCE that were PSG9 enhanced in HUVECs appear to involve the Ca2+/eNOS/NO signaling pathway. These findings suggest that serum PSG9 levels may be a potential biomarker for monitoring the occurrence or development of preeclampsia in pregnancy and that PSG9 may be a potential therapeutic target for the treatment of preeclampsia.
Collapse
|
4
|
Pan QF, Ouyang WW, Zhang MQ, He S, Yang SY, Zhang J. Chondroitin polymerizing factor predicts a poor prognosis and promotes breast cancer progression via the upstream TGF-β1/SMAD3 and JNK axis activation. J Cell Commun Signal 2023; 17:89-102. [PMID: 36042157 PMCID: PMC10030767 DOI: 10.1007/s12079-022-00684-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant composition of glycans in the tumor microenvironment (TME) contributes to tumor progression and metastasis. Chondroitin polymerizing factor (CHPF) is a glycosyltransferase that catalyzes the biosynthesis of chondroitin sulfate (CS). It is also correlated to transforming growth factor-β1 (TGF-β1) expression, a crucial mediator in the interaction of cancer cells with TME. In this study, we investigated the association of CHPF expression with the clinicopathological features of breast cancer (BRCA), as well the oncogenic effect and the underling mechanisms of CHPF upon BRCA cells. We found that CHPF expression is significantly increased in human BRCA tissues, and it is positively associated with TGF-β expression (r = 0.7125). The high-expression of CHPF predicts a poor prognosis and is positively correlated with tumor mass, lymph node metastasis, clinical staging and HER-2 negative-expression. The mechanistic study revealed that it promotes BRCA cell proliferation, migration and invasion through TGF-β1-induced SMAD3 and JNK activation in vitro, JNK (SP600125) or SMAD3 (SIS3) inhibitor can remove the promotion of CHPF upon cell proliferation, migration and invasion in MDA-MB-231 cells, which is derived from triple-negative breast cancer (TNBC). Collectively, our finding suggested CHPF may function as an oncogene and is highly expressed in human BRCA tissues. Pharmacological blockade of the upstream of JNK or SMAD3 signaling may provide a novel therapeutic target for refractory TNBC patients with CHPF abnormal high-expression.
Collapse
Affiliation(s)
- Qiang-Feng Pan
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Wei-Wei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Meng-Qi Zhang
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Shuo He
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Si-Yun Yang
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Jun Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
5
|
Tian T, Zhang Z, Chen T. PSG7 indicates that age at diagnosis is associated with papillary thyroid carcinoma: A study based on the cancer genome atlas data. Front Genet 2022; 13:952981. [PMID: 36276966 PMCID: PMC9579346 DOI: 10.3389/fgene.2022.952981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The age of the patients at diagnosis (age at diagnosis) is a self-contained element of danger for the prognosis of patients with papillary thyroid carcinoma (PTC), which has been well recognized and continuously adopted by the international cancer staging system. However, few studies have investigated its intrinsic mechanisms. In this study, we aim to comprehensively reveal the age-related pathogenesis of PTC and identify potential prognostic biomarkers. We divided the samples into two groups, young and elderly, to filter differentially expressed genes in The Cancer Genome Atlas (TCGA), with an age of 55 years serving as a cutoff. Moreover, we combined univariate, LASSO, and multivariate Cox regression analyses to construct age-related signatures for predicting progression-free survival. Additionally, functional enrichment analysis, immune infiltration analysis, differential expression analysis, clinicopathological correlation analysis, and drug sensitivity analysis were performed in different risk subgroups and expression subgroups. We screened 88 upregulated genes and 58 downregulated genes. Both the LASSO regression model that is validated in TCGA and the model of six age-related prognostic genes (IGF2BP1, GPRC6A, IL37, CRCT1, SEMG1, and PSG7) can be used to evaluate the progression-free survival of PTC patients. The GO, KEGG, and GSEA analyses revealed that each key gene was closely associated with PTC development. Furthermore, CD8+ T cells decreased significantly, while regulatory T cells increased dramatically in the high-risk and PSG7 high expression groups. PSG7 was remarkably correlated with clinicopathological parameters (pathologic stage, T stage, and N stage) of PTC patients, and PSG7 expression was elevated in tumor samples from both TCGA and the Gene Expression Omnibus and was strongly associated with progressive stage and poor prognosis. Our results provide an innovative understanding of the age-related molecular mechanisms of PTC development. PSG7 was identified to exert a critical role in PTC progression and may serve as a promising strategy for predicting the prognosis of PTC.
Collapse
Affiliation(s)
- Tianjie Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Zixiong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ting Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Ting Chen,
| |
Collapse
|
6
|
Xu J, Zhang S, Wu T, Fang X, Zhao L. Discovery of TGFBR1 (ALK5) as a potential drug target of quercetin glycoside derivatives (QGDs) by reverse molecular docking and molecular dynamics simulation. Biophys Chem 2021; 281:106731. [PMID: 34864228 DOI: 10.1016/j.bpc.2021.106731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
Quercetin glycoside derivatives (QGDs) are a class of common compounds with a wide range of biological activities, such as antitumor activities. However, their molecular targets associated with biological activities have not been investigated. In this study, four common QGDs with mutual bioconversion were selected, and studied in the large-scale reverse docking experiments. Network pharmacology analysis showed that most of the four QGDs can bind several potential protein targets that were closely related to breast cancer disease. Among them, a druggable protein, transforming growth factor beta receptor I (TGFBR1/ALK5) was screened via high docking scores for the four QGDs. This protein has been proven to be an important target for the treatment of breast cancer by regulating the proliferation and migration of cancer cells in the past. Subsequently, the molecular dynamics (MD) simulation and MM/GBSA calculation demonstrated that all QGDs could thermodynamically bind with TGFBR1, indicating that TGFBR1 might be one of the potential protein targets of QGDs. Finally, the cytotoxicity test and wound-healing migration assay displayed that isoquercetin, which can perform best in MD experiment, might be a promising agent in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Jiahui Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shanshan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
7
|
Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC, Liu JS. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res 2021; 55:720-730. [PMID: 34160338 DOI: 10.1080/10715762.2021.1923705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric cancer is a common lethal malignancy and causes great cancer-related mortality worldwide. MicroRNA (miR)-328-3p is implicated in the progression of various human cancers; however, its role and mechanism in the progression of gastric cancer remain unclear.Human gastric cancer cells were incubated with miR-328-3p mimic, inhibitor or the matched negative control. Cell viability, colony formation, migrative and invasive capacity, cell apoptosis and oxidative stress were measured. To clarify the involvement of nuclear factor-E2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1), small interfering RNA was used. miR-328-3p was upregulated in human gastric cancer cells and tissues, and its level positively correlated with the progression of gastric cancer. miR-328-3p promoted cell viability, colony formation, migration and invasion, thereby facilitating the progression of gastric cancer. miR-328-3p mimic reduced, while miR-328-3p inhibitor increased apoptosis and oxidative stress of human gastric cancer cells. Mechanistically, miR-328-3p upregulated NRF2 via targeting KEAP1to attenuate excessive free radical production and cell apoptosis. miR-328-3p functions as an oncogenic gene and inhibiting miR-328-3p may help to develop novel therapeutic strategies of human gastric cancer.
Collapse
Affiliation(s)
- Zhe Xiao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Bin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Xin Dao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Fei Luo
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Hong Deng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Cheng Yan
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-Sheng Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|