1
|
Lu J, Li N, Zhang W. MLC2: Physiological Functions and Potential Roles in Tumorigenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01721-6. [PMID: 40089610 DOI: 10.1007/s12013-025-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The myosin regulatory light chain 2 (MLC2) is a crucial regulator of myosin activity. Its phosphorylation, mediated by various kinases, plays a vital role in maintaining normal physiological functions in skeletal muscle, myocardium, smooth muscle, and nonmuscle cells. Moreover, MLC2 has been implicated in the development of many cancers through its phosphorylation. An increasing number of studies have shown that MLC2 may influence tumor progression by modulating cancer cell growth, migration, invasion, apoptosis, and autophagy. In this paper, we provide a concise overview of the phosphorylation regulatory mechanisms of MLC2 and its roles in both physiology and tumorigenesis. Furthermore, this study proposes potential directions for future research.
Collapse
Affiliation(s)
- Jiaxue Lu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nan Li
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
3
|
Song X, Wei Z, Zhang C, Han D, Liu J, Song Y, Xie X, Shao D, Zhao M, Chao F, Xu G, Wang S, Chen G. CircAKT3 promotes prostate cancer proliferation and metastasis by enhancing the binding of RPS27A and RPL11. Mol Cancer 2025; 24:53. [PMID: 39994725 PMCID: PMC11852832 DOI: 10.1186/s12943-025-02261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Metastatic prostate cancer (PCa) is a leading cause of mortality among PCa patients. Although circular RNAs (circRNAs) are recognized for their pivotal roles in tumorigenesis, the specifics of their influence within the context of PCa have yet to be fully elucidated. METHODS RT-qPCR was conducted to evaluate circAKT3 expression in PCa cells and in both tumor and adjacent noncancerous tissues. The oncogenic role of circAKT3 was confirmed through a combination of in vitro and in vivo experiments. Mechanistic investigations using RNA-pulldown, RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), immunofluorescence (IF), and Chromatin Immunoprecipitation (ChIP) assays explored how circAKT3 modulates c-Myc activity via interactions with RPS27A and RPL11. Additionally, Western Blotting and further in vitro and in vivo studies assessed circAKT3's influence on PCa progression through MST1. RESULTS This research identified the function and regulation of circAKT3, a circRNA derived from exons 2 to 8 of the kinase-b3 (AKT3) gene, in human PCa cells. CircAKT3 was significantly correlated with clinical indicators of disease severity, including D'Amico risk classification, the Gleason score, and pT stage. Both in vitro and in vivo experiments demonstrated that circAKT3 knockdown inhibited PCa cell proliferation, migration, and invasion. Lipid nanoparticles encapsulating si-circAKT3 (LNP-si-circAKT3) effectively suppressed the growth of bone tumors formed by PCa cells. Mechanistically, circAKT3 acted as a protein scaffold between ribosomal protein S27a (RPS27A) and ribosomal protein L11 (RPL11), promoting their cytoplasmic translocation and reducing nuclear RPL11 levels, ultimately diminishing RPL11's interaction with c-Myc and resulting in enhanced c-Myc-driven suppression of macrophage stimulating 1 (MST1) expression. Consequently, the decreased MST1 led to PCa progression and metastasis. CircAKT3 formation was facilitated by both flanking Alu elements and the RNA binding protein Quaking (QKI). Additionally, downregulation of the RNA helicase URH49 resulted in the nuclear accumulation of circAKT3, finally suppressing MST1 expression. CONCLUSION Our findings suggest that circAKT3 acts as a protein scaffold, promoting the interaction between RPS27A and RPL11, thereby influencing c-Myc activity and PCa progression. This study underscores the crucial role of circAKT3 in PCa and its potential as a therapeutic target to impede malignancy progression and metastasis.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ziwei Wei
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Cong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yufeng Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xuefeng Xie
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Dingchang Shao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Mingkun Zhao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Fan Chao
- Department of Urology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, Fujian, 361015, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Shiyu Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
4
|
Han D, Wu Z, Zhang C, Wei Z, Chao F, Xie X, Liu J, Song Y, Song X, Shao D, Wang S, Xu G, Chen G. GILT stabilizes cofilin to promote the metastasis of prostate cancer. Cell Death Discov 2025; 11:10. [PMID: 39820478 PMCID: PMC11739388 DOI: 10.1038/s41420-025-02288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Gamma-interferon-induced lysosomal thiol reductase (GILT), known for catalyzing disulfide bond reduction, is involved in various physiological processes. While the involvement of GILT in the development of various tumors has been demonstrated, the mechanisms underlying its regulation in prostate cancer (PCa) are not fully understood. In the present study, we confirmed that GILT was significantly upregulated in PCa and facilitated tumor metastasis. Mechanistically, GILT stabilized the cofilin protein by competitively binding to cofilin with Src family tyrosine kinase (SRC), inhibiting SRC-mediated tyrosine phosphorylation of cofilin, thereby suppressing the ubiquitination pathway degradation of cofilin. GILT overexpression stabilized and increased the protein level of cofilin in PCa cells and promoted the metastasis of PCa cells by accelerating actin dynamics through cofilin-mediated actin severing. Our findings reveal a novel mechanism of GILT in PCa and provide a new potential target for the diagnosis and treatment of PCa patients.
Collapse
Affiliation(s)
- Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhiming Wu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ziwei Wei
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Xuefeng Xie
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dingchang Shao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Matsumura F, Murayama T, Kuriyama R, Matsumura A, Yamashiro S. Myosin phosphatase targeting subunit1 controls localization and motility of Rab7-containing vesicles: Is myosin phosphatase a cytoplasmic dynein regulator? Cytoskeleton (Hoboken) 2024; 81:872-882. [PMID: 38700016 PMCID: PMC11615836 DOI: 10.1002/cm.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Myosin phosphatase targeting subunit1 (MYPT1) is a critical subunit of myosin phosphatase (MP), which brings PP1Cδ phosphatase and its substrate together. We previously showed that MYPT1 depletion resulted in oblique chromatid segregation. Therefore, we hypothesized that MYPT1 may control microtubule-dependent motor activity. Dynein, a minus-end microtubule motor, is known to be involved in mitotic spindle assembly. We thus examined whether MYPT1 and dynein may interact. Proximity ligation assay and co-immunoprecipitation revealed that MYPT1 and dynein intermediate chain (DIC) were associated. We found that DIC phosphorylation is increased in MYPT1-depleted cells in vivo, and that MP was able to dephosphorylate DIC in vitro. MYPT1 depletion also altered the localization and motility of Rab7-containing vesicles. MYPT1-depletion dispersed the perinuclear Rab7 localization to the peripheral in interphase cells. The dispersed Rab7 localization was rescued by microinjection of a constitutively active, truncated MYPT1 mutant, supporting that MP is responsible for the altered Rab7 localization. Analyses of Rab7 vesicle trafficking also revealed that minus-end transport was reduced in MYPT1-depleted cells. These results suggest an unexpected role of MP: MP controls dynein activity in both mitotic and interphase cells, possibly by dephosphorylating dynein subunits including DIC.
Collapse
Affiliation(s)
- Fumio Matsumura
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Takashi Murayama
- Department of PharmacologyJuntendo University School of MedicineTokyoJapan
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aya Matsumura
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Shigeko Yamashiro
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
6
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
7
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Li K, Lv J, Wang J, Wei Y, Zhang Y, Lin J, Zhu Q. CircZNF609 inhibited bladder cancer immunotherapy sensitivity via enhancing fatty acid uptake through IGF2BP2/CD36 pathway. Int Immunopharmacol 2024; 137:112485. [PMID: 38878487 DOI: 10.1016/j.intimp.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are gaining attention for their involvement in immune escape and immunotherapy sensitivity regulation. CircZNF609 is a well-known oncogene in various solid tumours. Our previous research revealed its role in reducing the chemosensitivity of bladder cancer (BCa) to cisplatin. However, the underlying role of circZNF609 in BCa immune escape and immunotherapy sensitivity remains unknown. We conducted BCa cells-CD8 + T cells co-culture assays, cell line-derived xenograft and patient-derived xenograft mouse models with human immune reconstitution to further confirm the role of circZNF609 in BCa immune escape and immunotherapy sensitivity. Overexpression of circZNF609 promoted BCa immune escape in vitro and in vivo. Mechanistically, circZNF609 was bound to IGF2BP2, enhancing its interaction with the 3'-untranslated region of CD36. This increased the stability of the CD36 mRNA, leading to enhanced fatty acid uptake by BCa cells and fatty acid depletion within the tumour microenvironment. Additionally, the nuclear export of circZNF609 was regulated by DDX39B. CircZNF609 promoted immune escape and suppressed BCa immunotherapy sensitivity by regulating the newly identified circZNF609/IGF2BP2/CD36 cascade. Therefore, circZNF609 holds potential as both a biomarker and therapeutic target in BCa immunotherapy.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yetao Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Lin
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Wei Z, Zhang C, Song Y, Han D, Liu J, Song X, Chao F, Wang S, Xu G, Chen G. CircUBE3A(2,3,4,5) promotes adenylate-uridylate-rich binding factor 1 nuclear translocation to suppress prostate cancer metastasis. Cancer Lett 2024; 588:216743. [PMID: 38423246 DOI: 10.1016/j.canlet.2024.216743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Metastatic progression is the primary cause of mortality in prostate cancer (PCa) patients. Although circular RNAs (circRNAs) have been implicated in cancer progression and metastasis, our current understanding of their role in PCa metastasis remains limited. In this study, we identified that circUBE3A(2,3,4,5), which originated from exons 2, 3, 4 and 5 of the human ubiquitin-protein ligase E3A (UBE3A) gene, was specifically downregulated in PCa tissues and correlated with the Gleason score, bone metastasis, and D'Amico risk classification. Through the in vitro and in vivo experiments, we demonstrated that overexpression of circUBE3A(2,3,4,5) inhibited PCa cell migration, invasion, metastasis, and proliferation. Mechanistically, circUBE3A(2,3,4,5) was found to bind to adenylate-uridylate-rich binding factor 1 (AUF1), promoting the translocation of AUF1 into the nucleus. This led to decreased AUF1 in the cytoplasm, resulting in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) mRNA instability and a subsequent reduction at the protein level. The downregulation of MTHFD2 further inhibited vimentin expression, thereby suppressing PCa cell epithelial-mesenchymal transition. Additionally, two pairs of the short-inverted repeats (TSIRs) in flanking introns were identified to synergistically facilitate the generation of circUBE3A(2,3,4,5) and other circRNAs. In summary, TSIRs-induced circUBE3A(2,3,4,5) acts as a suppressor of PCa metastasis by enhancing AUF1 nuclear translocation, reducing MTHFD2, and subsequently inhibiting vimentin expression. This study characterizes circUBE3A(2,3,4,5) as a functional circRNA and proposes it as a highly promising target for preventing PCa metastasis.
Collapse
Affiliation(s)
- Ziwei Wei
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China; Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yufeng Song
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Xiaoming Song
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Fan Chao
- Department of Urology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, Fujian, China
| | - Shiyu Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| |
Collapse
|
10
|
Xu Z, Zheng L, Li S. Paclitaxel-induced inhibition of NSCLC invasion and migration via RBFOX3-mediated circIGF1R biogenesis. Sci Rep 2024; 14:774. [PMID: 38191906 PMCID: PMC10774373 DOI: 10.1038/s41598-024-51500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
We previously reported that circIGF1R is significantly downregulated in non-small cell lung cancer (NSCLC) cells and tissues. It inhibits cancer cell invasion and migration, although the underlying molecular mechanisms remain elusive. The invasion and migration of NSCLC cells was analyzed by routine in vivo and in vitro functional assays. Fluorescent in situ hybridization, luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation (RIP) assay were performed to explore the molecular mechanisms. Mechanism of action of paclitaxel-induced RBFOX3-mediated inhibition of NSCLC invasion and migration was investigated through in vitro and in vivo experiments.Our study reveals that circIGF1R acts as a Competing Endogenous RNA (ceRNA) for miR-1270, thereby regulating Van-Gogh-like 2 (VANGL2) expression and subsequently inhibiting NSCLC cell invasion and migration via the Wnt pathway. We also found that RNA binding protein fox-1 homolog 3 (RBFOX3) enhances circIGF1R biogenesis by binding to IGF1R pre-mRNA, which in turn suppresses migration and invasion in NSCLC cells. Additionally, the chemotherapeutic drug paclitaxel was shown to impede NSCLC invasion and migration by inducing RBFOX3-mediated circIGF1R biogenesis.RBFOX3 inhibits the invasion and migration of NSCLC cells through the circIGF1R/ miR-1270/VANGL2 axis, circIGF1R has the potential to serve as a biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
11
|
Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D, Zeng K, Wang K. n6-methyladenosine-modified circular RNA family with sequence similarity 126, member A affects cholesterol synthesis and malignant progression of prostate cancer cells by targeting microRNA-505-3p to mediate calnexin. J Cancer 2024; 15:966-980. [PMID: 38230215 PMCID: PMC10788727 DOI: 10.7150/jca.89135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men. In tumor biology, n6-methyladenosine (m6A) can mediate the production of circular RNAs (circRNAs). This study focused on the mechanism of m6A-modified circRNA family with sequence similarity 126, member A (FAM126A) in PCa. Cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, transwell assay, and xenograft mouse models were applied to study the role of circFAM126A in PCa cell growth and tumor metastasis, and cellular triglyceride and cholesterol levels were measured to assess cholesterol synthesis. RNA immunoprecipitation, RNA pull-down, luciferase reporter gene assay, and western blot were adopted to explore the underlying molecular mechanism. Data showed that circFAM126A was upregulated in PCa and promoted PCa progression in vitro. m6A modification of circFAM126A enhanced transcriptional stability. CircFAM126A targeted microRNA (miR)-505-3p to mediate calnexin (CANX). Up-regulating miR-505-3p or inhibiting CANX suppressed cholesterol synthesis and malignant progression in PCa cells. Overexpressing CANX suppressed the inhibitory effect of circFAM126A silencing or miR-505-3p upregulation on PCa cells. Our current findings provide a new therapeutic strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Lin Luo
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - Ping Li
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - QingZhi Xie
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - YunChou Wu
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - FuQiang Qin
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - DunMing Liao
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - Ke Zeng
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - KangNing Wang
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410083, China
| |
Collapse
|
12
|
Lu L, Wang F, Chen J, Zhao C, Guo S, Dong D, Jiang M, Huang Y. CircTENM3 inhibites tumor progression via the miR-558/RUNX3 axis in prostate cancer. J Transl Med 2023; 21:850. [PMID: 38007527 PMCID: PMC10675854 DOI: 10.1186/s12967-023-04708-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is currently acknowledged as the second most widespread cancer among men worldwide. Yet, the lack of dependable diagnostic biomarkers and therapeutic targets has presented considerable hurdles to the progression of prostate cancer treatment. Circular RNAs are implicated in the pathogenesis of numerous diseases, positioning them as promising biomarkers for diverse medical conditions. This study aims to uncover a specific circRNA that could serve as a diagnostic and therapeutic target for detecting and treating PCa. METHODS The change of circTENM3 expression levels in PCa was detected by qPCR. CCK8 assays, EdU assays, Scratch assay and Transwell migration assay conducted to detect the role of circTENM3 in PCa cells in vitro. RIP assay, RNA-pull down and luciferase reporter assay were performed to explore the mechanism of circTENM3. Gain-of-function analysis was performed to reveal the function of circTENM3 in PCa in vivo. RESULTS The results revealed that the expression level of circTENM3 was significantly down-regulated in PCa. CircTENM3 overexpression alleviated the progression of PCa in vitro. Mechanistically, circTENM3 enhanced RUNX3 levels via miR-558 sponge. Gain-of-function analysis determined that circTENM3 overexpression could inhibit PCa progression in vitro. CONCLUSIONS Our research offers profound insights into the protective role played by circTENM3 in PCa. CircTENM3 operates as a sponge for miR-558, thereby triggering the elevation of RUNX3 expression, which subsequently curbs the progression of PCa.
Collapse
Affiliation(s)
- Lingxiang Lu
- Department of Urinary Surgery, Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jianchun Chen
- Department of Urinary Surgery, Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuai Guo
- Department of Urinary Surgery, Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Da Dong
- Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu, China.
| | - Minjun Jiang
- Department of Urinary Surgery, Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu, China.
| | - Yuhua Huang
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
14
|
Mu M, Niu W, Chu F, Dong Q, Hu S, Niu C. CircSOBP suppresses the progression of glioma by disrupting glycolysis and promoting the MDA5-mediated immune response. iScience 2023; 26:107897. [PMID: 37766977 PMCID: PMC10520879 DOI: 10.1016/j.isci.2023.107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma, an aggressively growing and highly malignant brain tumor, poses substantial therapeutic challenges due to its resistance to radiotherapy and chemotherapy. Recent research has identified circRNAs as pivotal players in glioma formation and development. However, the roles of circRNA in the metabolic and immune regulation of glioma are unclear. In this study, circSOBP expression was significantly downregulated in glioma cells and specimens. Functionally, enhanced circSOBP expression mitigated cell proliferation, invasion, migration, and glycolysis in gliomas. Mechanistically, circSOBP inhibited glycolysis and activated the MDA5-mediated IKKε/TBK1/IRF3 signaling pathway by binding TKFC proteins. Furthermore, the elevated levels of IFN-I induced by the MDA5 pathway increased the number and activity of CD8+ T and NK cells in the immune response of the animal models. In summary, our findings have emphasized the critical role of circSOBP in binding and modulating TKFC protein, offering potential therapeutic avenue for targeting glioma metabolism and immunological reprogramming.
Collapse
Affiliation(s)
- Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Fang Chu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Qingsheng Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui 230001, P.R. China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
15
|
Marqués M, Pont M, Hidalgo I, Sorolla MA, Parisi E, Salud A, Sorolla A, Porcel JM. MicroRNAs Present in Malignant Pleural Fluid Increase the Migration of Normal Mesothelial Cells In Vitro and May Help Discriminate between Benign and Malignant Effusions. Int J Mol Sci 2023; 24:14022. [PMID: 37762343 PMCID: PMC10531386 DOI: 10.3390/ijms241814022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The sensitivity of pleural fluid (PF) analyses for the diagnosis of malignant pleural effusions (MPEs) is low to moderate. Knowledge about the pathobiology and molecular characteristics of this condition is limited. In this study, the crosstalk between stromal cells and tumor cells was investigated in vitro in order to reveal factors that are present in PF which can mediate MPE formation and aid in discriminating between benign and malignant etiologies. Eighteen PF samples, in different proportions, were exposed in vitro to mesothelial MeT-5A cells to determine the biological effects on these cells. Treatment of normal mesothelial MeT-5A cells with malignant PF increased cell viability, proliferation, and migration, and activated different survival-related signaling pathways. We identified differentially expressed miRNAs in PF samples that could be responsible for these changes. Consistently, bioinformatics analysis revealed an enrichment of the discovered miRNAs in migration-related processes. Notably, the abundance of three miRNAs (miR-141-3p, miR-203a-3, and miR-200c-3p) correctly classified MPEs with false-negative cytological examination results, indicating the potential of these molecules for improving diagnosis. Malignant PF produces phenotypic and functional changes in normal mesothelial cells. These changes are partly mediated by certain miRNAs, which, in turn, could serve to differentiate malignant from benign effusions.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - José M. Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
16
|
Ling X, Wang R, Lin L, Wu Y, Cheng W. N6-methyladenosine-modified microRNA-675 advances the development of gastrointestinal stromal tumors via inhibiting myosin phosphatase targeting protein 1. Genomics 2023; 115:110704. [PMID: 37678441 DOI: 10.1016/j.ygeno.2023.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
RNA N6-methyladenosine (m6A) modifications influence gastrointestinal stromal tumors (GISTs) development, but the detailed molecular mechanisms have not been fully studied. Here, microRNA-675 was found to be aberrantly elevated in cancerous tissues and cells of GISTs, compared to the corresponding normal counterparts, and GISTs patients with high-expressed microRNA-675 have worse outcomes. Additional experiments confirmed that silencing of microRNA-675 hindered cell division, mobility and tumorigenesis in vitro and in vivo, whereas triggered apoptotic cell death in GISTs cells. Furthermore, microRNA-675-ablation increased the expression levels of myosin phosphatase targeting protein 1 (MYPT1) to inactivate the tumor-initiating RhoA/NF2/YAP1 signal pathway, and downregulation of MYPT1 recovered the malignant phenotypes in microRNA-675-silenced GISTs cells. In addition, we evidenced that METTL3-mediated m6A modifications were essential for sustaining the stability of microRNA-675, and silencing of METTL3 restrained tumorigenesis of GISTs cells by regulating the microRNA-675/MYPT1 axis. To summarize, theMETTL3/m6A/microRNA-675/MYPT1 axis could be used as novel biomarkers for the diagnosis and treatment of GISTs.
Collapse
Affiliation(s)
- Xiaohua Ling
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Ruifeng Wang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, Litang Road No. 168, Changping District, Beijing 102200, China
| | - Luoqiang Lin
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yuxuan Wu
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China
| | - Weipeng Cheng
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
17
|
Li Y, Kong Y, An M, Luo Y, Zheng H, Lin Y, Chen J, Yang J, Liu L, Luo B, Huang J, Lin T, Chen C. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J Exp Clin Cancer Res 2023; 42:191. [PMID: 37528489 PMCID: PMC10394821 DOI: 10.1186/s13046-023-02757-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) circularized by back-splicing of pre-mRNA are widely expressed and affected the proliferation, invasion and metastasis of bladder cancer (BCa). However, the mechanism underlying circRNA biogenesis in mediating the distant metastasis of BCa still unexplored. METHODS RNA sequencing data between BCa and normal adjacent tissues was applied to identify the differentially expressed circRNAs. The functions of circNIPBL in BCa were investigated via a series of biochemical experiments. The Clinical significance of circNIPBL was examined in a cohort of larger BCa tissues. RESULTS In the present study, we identified a novel circRNA (hsa_circ_0001472), circNIPBL, which was significantly upregulated and had great influence on the poor prognosis of patients with BCa. Functionally, circNIPBL promotes BCa metastasis in vitro and in vivo. Mechanistically, circNIPBL upregulate the expression of Wnt5a and activated the Wnt/β-catenin signaling pathway via directly sponged miR-16-2-3p, leading to the upregulation of ZEB1, which triggers the EMT of BCa. Moreover, we revealed that ZEB1 interacted with the flanking introns of exons 2-9 on NIPBL pre-mRNA to trigger circNIPBL biogenesis, thus forming a positive feedback loop. Importantly, circNIPBL overexpression significantly facilitated the distant metastasis of BCa in the orthotopic bladder cancer model, while silencing ZEB1 remarkably blocked the effects of metastasis induced by circNIPBL overexpression. CONCLUSIONS Our study highlights that circNIPBL-induced Wnt signaling pathway activation triggers ZEB1-mediated circNIPBL biogenesis, which forms a positive feedback loop via the circNIPBL/miR-16-2-3p/Wnt5a/ZEB1 axis, supporting circNIPBL as a novel therapeutic target and potential biomarker for BCa patients.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, P. R. China
| | - Libo Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
18
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Zhang C, Wang S, Chao F, Jia G, Ye X, Han D, Wei Z, Liu J, Xu G, Chen G. The short inverted repeats-induced circEXOC6B inhibits prostate cancer metastasis by enhancing the binding of RBMS1 and HuR. Mol Ther 2023; 31:1705-1721. [PMID: 35974702 PMCID: PMC10277840 DOI: 10.1016/j.ymthe.2022.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous RNAs with a covalently closed loop structure. Many circRNAs have been found to participate in cancer progression. However, the detailed generation process, functions, and related mechanisms of circRNAs in prostate cancer (PCa) remain largely unknown. In the present study, we identified circEXOC6B, a novel suppressor in the metastasis of PCa. Functionally, circEXOC6B, originating from the exocyst complex component 6B (EXOC6B) gene, inhibited migration and invasion of PCa in vitro and in vivo. Mechanistically, by acting as a protein scaffold, circEXOC6B enhanced the binding of human RNA binding motif single strand interacting protein 1 (RBMS1) and human antigen R (HuR) and further increased A-kinase anchoring protein 12 (AKAP12) expression to inhibit PCa metastasis. Unlike previous studies, we found that one pair of short inverted repeats in flanking introns at least partly promoted the circularization of circEXOC6B. Our study presents a novel mechanism for the inhibitory role of circEXOC6B in PCa metastasis and provides new insight into the molecular process of circRNA generation.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guojin Jia
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Xuanguang Ye
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziwei Wei
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Feng H, Deng Z, Peng W, Wei X, Liu J, Wang T. Circular RNA EPHA3 suppresses progression and metastasis in prostate cancer through the miR-513a-3p/BMP2 axis. J Transl Med 2023; 21:288. [PMID: 37118847 PMCID: PMC10148471 DOI: 10.1186/s12967-023-04132-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may regulate the onset and progression of human malignancies by competitively binding to microRNA (miRNA) sponges, thus regulating the downstream genes. However, aberrant circRNA expression patterns and their biological functions in prostate cancer (PCa) warrant further studies. Our research sought to shed further light on the possible role and molecular mechanism of circEPHA3 action in controlling the growth and metastasis of PCa cells. MATERIALS AND METHODS circEPHA3 (has_circ_0066596) was initially screened from a previous circRNA microarray and identified following Actinomycin D and RNase R assays. Fluorescence in situ hybridization, biotin-coupled probe RNA pulldown, and dual-luciferase reporter gene assays were performed to examine the relationship between circEPHA3 and miR-513a-3p. The biological role of circEPHA3 in PCa was assessed by CCK8, wound healing, Transwell assays, and animal experiments. RESULTS We identified a novel circular RNA, circEPHA3 (has_circ_0066596), which was down-regulated in high-grade PCa tissues and cell lines. The outcomes of CCK8, wound healing, Transwell assays, and animal experiments revealed that circEPHA3 prohibited the progression and metastasis of PCa in vivo and in vitro. Mechanistically, circEPHA3 was directly bound to miR-513a-3p and regulated the downstream gene, BMP2, thereby serving as a tumor suppressor in PCa. CONCLUSIONS As a tumor suppressor, circEPHA3 inhibited the proliferation and metastasis of PCa cells through the miR-513a-3p/BMP2 axis, suggesting that circEPHA3 might be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Wei
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, Zhang HL, Shi GH, Wang ZL, Cao DL, Ye DW. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol Cancer 2023; 22:61. [PMID: 36966306 PMCID: PMC10039696 DOI: 10.1186/s12943-023-01766-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ya Zhang
- Department of Nephrology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Sheng-Feng Zheng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Tao Feng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Zhen-Da Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Wen-Kai Zhu
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jia-Qi Su
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Hai-Liang Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Guo-Hai Shi
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zi-Liang Wang
- Institute of Cancer Research, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Da-Long Cao
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China.
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
23
|
Ruan Y, Li Z, Xie Y, Sun W, Guo J. Detecting plasma hsa_circ_0061276 in patients with gastric cancer by reverse transcription-digital polymerase chain reaction. Front Oncol 2022; 12:1042248. [PMID: 36620570 PMCID: PMC9816570 DOI: 10.3389/fonc.2022.1042248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background The role of circular RNAs (circRNAs) in the occurrence of gastric cancer is still unclear. Therefore, the diagnostic value and mechanisms underlying hsa_circ_0061276 in the occurrence of gastric cancer were explored. Methods Reverse transcription-droplet digital polymerase chain reaction was used to detect the copy number of hsa_circ_0061276 in plasma from healthy individuals, as well as from patients with gastric precancerous lesions or early-stage or advanced gastric cancer. Plasmids overexpressing or knocking down hsa_circ_0061276 expression were transfected into gastric cancer cells. The effects on the growth, migration, and cell cycle distribution of gastric cancer cells were then analyzed. Finally, miRanda and RNAhybrid were used to explore the binding sites between hsa_circ_0061276 and microRNAs (miRNAs). A double luciferase reporter gene assay was used to confirm the miRNA sponge effect. Results The results show that plasma hsa_circ_0061276 copy number showed a trend of a gradual decrease when comparing healthy controls to the early cancer group and advanced gastric cancer group. Overexpression of hsa_circ_0061276 inhibited the growth and migration of gastric cancer cells. Through bioinformatic analyses combined with cellular experiments, it was found that hsa_circ_0061276 inhibited the growth of gastric cancer by binding to hsa-miR-7705. Conclusion Hsa_circ_0061276 may be a new biomarker for gastric cancer. The tumor suppressor role of hsa_circ_0061276 on gastric cancer likely occurs through a sponge effect on miRNAs such as hsa-miR-7705.
Collapse
Affiliation(s)
- Yao Ruan
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Weiliang Sun
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Institute of Gastrointestinal Tumor of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Gastrointestinal Tumor of Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
24
|
Xie J, Jiang H, Zhao Y, Jin XR, Li B, Zhu Z, Zhang L, Liu J. Prognostic and diagnostic value of circRNA expression in prostate cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:945143. [PMID: 36419885 PMCID: PMC9676972 DOI: 10.3389/fonc.2022.945143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are receiving increasing attention as novel biomarkers. Our goal was to investigate the diagnostic, clinicopathological, and prognostic utility of circRNAs in prostate cancer (PCa). METHODS Relevant literature was searched in PubMed, Web of Science, and EMBASE. Sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (NLR), positive likelihood ratio (PLR), and the area under the curve (AUC) were calculated to evaluate the diagnostic accuracy of circRNA expression. circRNAs' clinical, pathological, and prognostic value was examined using pooled odds ratios (ORs) and hazard ratios (HRs). RESULTS This meta-analysis included 23 studies, with 5 for diagnosis, 16 for clinicopathological parameters, and 10 for prognosis. For diagnostic value, the pooled sensitivity, pooled specificity, PLR, NLR, DOR, and AUC were 0.82, 0.62, 2.17, 0.29, 7.37, and 0.81, respectively. Upregulation of carcinogenic circRNAs was associated with poor clinical parameters (Gleason score: OR = 0.222, 95% CI: 0.145-0.340; T classification: OR = 0.274, 95% CI: 0.175-0.430; lymph node metastasis: OR = 0.353, 95% CI: 0.175-0.716; tumor size: OR = 0.226, 95% CI: 0.099-0.518) and could predict poor survival outcomes (HR = 2.408, 95% CI: 1.559-3.720, p < 0.001). Conversely, downregulation of tumor-suppressor circRNAs was also associated with poor clinical parameters (Gleason score: OR = 1.689, 95% CI: 1.144-2.493; T classification: OR = 2.586, 95% CI: 1.779-3.762) and worse prognosis (HR = 1.739, 95% CI: 1.147-2.576, p = 0.006). CONCLUSION Our results showed that circRNAs might be useful biomarkers for the diagnosis and prognosis of PCa. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42021284785.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
25
|
Abstract
OBJECTIVES Gastric cancer (GC) causes no symptoms at early stages. However, with the progression, GC causes symptoms mimicking normal gastrointestinal issues, such as irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), gastritis, or peptic ulcers (PU). CircRNA circSOBP has been characterized as a critical regulator in prostate cancer. The present study aimed to study its involvement in GC. MATERIALS AND METHODS Plasma samples were collected from GC patients (n = 64), IBS patients (n = 64), GERD patients (n = 64), gastritis patients (n = 64), PU patients (n = 64), and healthy controls (HCs, n = 64). Paired GC and non-tumor samples were from all GC patients (n = 64). Tissue and plasma samples were subjected to RT-qPCR to determine circSOBP expression. The role of circSOBP in distinguishing GC patients from other patients was analyzed by ROC curve. The 64 patients were followed up for 5 years to study the role of circSOBP in predicting the survival of GC patients. RESULTS Decreased circSOBP RNA accumulation was observed in GC tissues compared to normal tissue samples. Decreased plasma circSOBP accumulation was only observed in GC patients, but not other patients, compared to HCs. With plasma circSOBP as a biomarker, GC patients were separated from other patients and HCs. Patients with high plasma or tissue levels of circSOBP showed better survival conditions. In addition, plasma and tissue circSOBP levels were only closely correlated with GC patients' tumor metastasis, but not other clinical factors. CONCLUSIONS Decreased circSOBP accumulation may be applied in clinical practice to improve the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Xisheng Yan
- Department of Gastroenterology, The First Hospital of Yulin Shanxi, Yulin City, Shanxi Province, P. R. China
| | - Jian Wang
- Department of Gastroenterology, The First Hospital of Yulin Shanxi, Yulin City, Shanxi Province, P. R. China
| | - Yuqiang Bai
- Department of Gastroenterology, The First Hospital of Yulin Shanxi, Yulin City, Shanxi Province, P. R. China
| |
Collapse
|
26
|
An M, Zheng H, Huang J, Lin Y, Luo Y, Kong Y, Pang M, Zhang D, Yang J, Chen J, Li Y, Chen C, Lin T. Aberrant Nuclear Export of circNCOR1 Underlies SMAD7-Mediated Lymph Node Metastasis of Bladder Cancer. Cancer Res 2022; 82:2239-2253. [PMID: 35395674 PMCID: PMC9359746 DOI: 10.1158/0008-5472.can-21-4349] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNA) containing retained introns are normally sequestered in the nucleus. Dysregulation of cellular homeostasis can drive their nuclear export, which may be involved in cancer metastasis. However, the mechanism underlying circRNA nuclear export and its role in lymph node (LN) metastasis of bladder cancer remain unclear. Here, we identify an intron-retained circRNA, circNCOR1, that is significantly downregulated in LN metastatic bladder cancer and is negatively associated with poor prognosis of patients. Overexpression of circNCOR1 inhibited lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Nuclear circNCOR1 epigenetically promoted SMAD7 transcription by increasing heterogeneous nuclear ribonucleoprotein L (hnRNPL)-induced H3K9 acetylation in the SMAD7 promoter, leading to inhibition of the TGFβ-SMAD signaling pathway. Nuclear retention of circNCOR1 was regulated by small ubiquitin-like modifier (SUMO)ylation of DDX39B, an essential regulatory factor responsible for circRNA nuclear-cytoplasmic transport. Reduced SUMO2 binding to DDX39B markedly increased circNCOR1 retention in the nucleus to suppress bladder cancer LN metastasis. By contrast, SUMOylated DDX39B activated nuclear export of circNCOR1, impairing the suppressive role of circNCOR1 on TGFβ-SMAD cascade activation and bladder cancer LN metastasis. In patient-derived xenograft (PDX) models, overexpression of circNCOR1 and inhibition of TGFβ signaling significantly repressed tumor growth and LN metastasis. This study highlights SUMOylation-induced nuclear export of circNCOR1 as a key event regulating TGFβ-SMAD signaling and bladder cancer lymphangiogenesis, thus supporting circNCOR1 as a novel therapeutic agent for patients with LN metastatic bladder cancer. SIGNIFICANCE This study identifies the novel intron-retained circNCOR1 and elucidates a SUMOylation-mediated DDX39B-circNCOR1-SMAD7 axis that regulates lymph node metastasis of bladder cancer.
Collapse
Affiliation(s)
- Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuming Luo
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yao Kong
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dingwen Zhang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabin Yang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| |
Collapse
|
27
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
28
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Yu Y, Dong G, Li Z, Zheng Y, Shi Z, Wang G. circ‑LRP6 contributes to osteosarcoma progression by regulating the miR‑141‑3p/HDAC4/HMGB1 axis. Int J Oncol 2022; 60:38. [PMID: 35211755 PMCID: PMC8878724 DOI: 10.3892/ijo.2022.5328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA-lipoprotein receptor 6 (circ-LRP6) serves a role in promoting the tumorigenesis of retinoblastoma, esophageal squamous cell cancer and oral squamous cell carcinoma; however, whether circ-LRP6 demonstrates the same effect in osteosarcoma (OS) is yet to be fully elucidated. The present study aimed to analyze the expression, role and potential molecular mechanism of circ-LRP6 in OS. The expression levels of circ-LRP6, microRNA (miR)-141-3p, histone deacetylase 4 (HDAC4) and high mobility group protein 1 (HMGB1) were evaluated by reverse transcription- quantitative PCR in OS tissues and cell lines. Cell Counting Kit-8, Transwell and Matrigel assays were conducted to evaluate cell proliferation, migration and invasion, respectively. Western blotting was also performed to determine HDAC4 and HMGB1 protein expression levels. Bioinformatics and dual-luciferase reporter assays were used to predict and analyze the interactions between circ-LRP6 and miR-141-3p, miR-141-3p and HDAC4, as well as between miR-141-3p and HMGB1. Additionally, RNA immunoprecipitation was performed to verify the association between circ-LRP6 and miR-141-3p. The results confirmed that circ-LRP6 was highly expressed in OS tissues and cell lines. In addition, circ-LRP6 negatively regulated the expression of miR-141-3p and, in turn, miR-141-3p negatively regulated HDAC4 and HMGB1 expression. Functional assays revealed that circ-LRP6 knockdown inhibited the proliferation, migration and invasion of OS cells, whereas the inhibition of miR-141-3p or the overexpression of either HDAC4 or HMGB1 partly reversed the inhibitory effect of circ-LRP6 knockdown. In summary, the present study determined that circ-LRP6 knockdown inhibited the proliferation, migration and invasion of OS cells by regulating the miR-141-3p/HDAC4/HMGB1 axis.
Collapse
Affiliation(s)
- Yali Yu
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Guixiang Dong
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Zijun Li
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Yan Zheng
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Zhisong Shi
- Department of Orthopedic Surgery, Zhumadian Central Hospital, Zhumadian, Henan 463000, P.R. China
| | - Guanghui Wang
- Department of Orthopedic Surgery, Zhumadian Central Hospital, Zhumadian, Henan 463000, P.R. China
| |
Collapse
|
30
|
Novel circular RNA circ_0086722 drives tumor progression by regulating the miR-339-5p/STAT5A axis in prostate cancer. Cancer Lett 2022; 533:215606. [DOI: 10.1016/j.canlet.2022.215606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
|
31
|
Wang S, Chao F, Zhang C, Han D, Xu G, Chen G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett 2022; 524:109-120. [PMID: 34673127 DOI: 10.1016/j.canlet.2021.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa), especially castration-resistant PCa, is a common and fatal disease. circRNAs had been confirmed to affect the proliferation of a variety of malignant tumors. Exploring the role of circRNAs in PCa progression and discovering new therapeutic targets are of great importance for the treatment of PCa. In the present study, we found that the expression of circPFKP was significantly increased in PCa tissues compared with adjacent noncancerous prostate tissues, and was correlated with the D'Amico risk classification, N stage, and prognostic stage group of PCa. CircPFKP promotes the proliferation of PCa cells in vitro and in vivo. Suppressing circPFKP induced the G1/S arrest of PCa cells. Mechanistically, circPFKP interacted with IMPDH2, promoted the biogenesis of guanine nucleotides. Moreover, the replenishment of intracellular guanine nucleotides pool reverses the inhibitory effect of knocking-down circPFKP on PCa cell proliferation. hnRNPF might promote circPFKP generation by binding to flanking Alu elements. Our results identify a novel functional interaction of circPFKP with IMPDH2, which promotes the proliferation of PCa cells.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Wang S, Xu G, Chao F, Zhang C, Han D, Chen G. HNRNPC Promotes Proliferation, Metastasis and Predicts Prognosis in Prostate Cancer. Cancer Manag Res 2021; 13:7263-7276. [PMID: 34584453 PMCID: PMC8464311 DOI: 10.2147/cmar.s330713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The incidence of prostate cancer remains high worldwide, while exploring new therapeutic targets for prostate cancer is essential. Heterogeneous nuclear ribonucleoproteins have been proved to regulate tumorigeneses in various cancers. This study aimed to explore the role of HNRNPC in prostate cancer progression. METHODS HNRNPC expression and its correlation with clinical features and immune infiltration were analyzed by bioinformatics analysis. The effects of HNRNPC on prostate cell proliferation, migration, and invasion were accessed by EdU, colony formation, transwell, and wound-healing assays. RESULTS The expression level of HNRNPC was significantly increased in prostate cancer tissues and was correlated with the T stage, N stage, Gleason score, PSA level, residual tumors, overall survival, disease-specific survival, and progression-free interval of prostate cancer patients. Silencing HNRNPC inhibited the proliferation and metastasis of prostate cancer cells. The expression of HNRNPC was negatively correlated with the infiltration level of most immune cells in prostate cancer. Mechanistically, HNRNPC may function through regulating gene expression at the posttranscriptional level. CONCLUSION HNRNPC could be a potential marker for the treatment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
33
|
Chao F, Wang S, Zhang C, Han D, Xu G, Chen G. The Emerging Role of Circular RNAs in Prostate Cancer: A Systematic Review. Front Cell Dev Biol 2021; 9:681163. [PMID: 34386491 PMCID: PMC8353182 DOI: 10.3389/fcell.2021.681163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors that threaten the health of men. It is urgent to explore new molecular targets and develop new drugs for the treatment of prostate cancer. Circular RNAs (circRNAs) are aberrantly expressed in various malignant tumors. The dysregulated circRNAs are involved in the metastasis, tumor growth, drug resistance, and immunosuppression of malignant tumors. The present review systematically summarized publications concerning the biological implications of circRNAs in prostate cancer. The PubMed and Web of Science databases were used to retrieve publications concerning circRNAs and prostate cancer until June 16, 2021. The following keywords were used in the literature search: (circRNA OR circular RNA) AND prostate cancer. 73 publications were enrolled in the present systematic review to summarize the role of circRNAs in prostate cancer. The dysregulated and functional circRNAs were involved in the cell cycle, proliferation, migration, invasion, metastasis, drug resistance and radiosensitivity of prostate cancer. In addition, circRNAs could function through EVs and serve as prognostic and diagnostic biomarkers. Certain circRNAs were correlated with clinicopathological features of prostate cancer. A comprehensive review of the molecular mechanism of the tumorigenesis and progression of prostate cancer may contribute to the development of new therapies of prostate cancer in the future.
Collapse
Affiliation(s)
- Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Ding H, Wang X, Liu H, Na L. Higher circular RNA_0015278 correlates with absence of extrathyroidal invasion, lower pathological tumor stages, and prolonged disease-free survival in papillary thyroid carcinoma patients. J Clin Lab Anal 2021; 35:e23819. [PMID: 33969549 PMCID: PMC8275007 DOI: 10.1002/jcla.23819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Background Circular RNA_0015278 (circ_0015278) inhibits the progression of several cancers and is greatly reduced in papillary thyroid carcinoma (PTC) tissues compared with benign thyroid lesions by microarray profiling. This study aimed to further investigate the correlation of circ_0015278 with tumor characteristics and prognosis in PTC patients. Methods Totally, 206 PTC patients who underwent tumor resection were retrospectively enrolled; subsequently, circ_0015278 expression in their tumor and adjacent tissues was detected by reverse transcriptional‐quantitative polymerase chain reaction. Besides, disease‐free survival (DFS) and overall survival (OS) were calculated. Results Circ_0015278 was reduced in tumor tissues compared with adjacent tissues (p < 0.001), and receiver operating characteristic analysis showed that it well discriminated tumor tissues from adjacent tissues (area under curve: 0.903, 95% confidence interval: 0.874–0.932). Besides, higher tumor circ_0015278 expression was correlated with absence of extrathyroidal invasion (p = 0.036), lower pathological tumor (pT) stage (p = 0.05), pathological node (pN) stage (p = 0.002), and pathological tumor‐node‐metastasis (pTNM) stage (p = 0.001). Moreover, higher tumor circ_0015278 expression was associated with a reduced relapse rate (p = 0.011), but not mortality rate (p = 0.110); meanwhile, it was also correlated with prolonged DFS (p = 0.017), but not OS (p = 0.136). Additionally, multivariate Cox's regression analyses showed that higher tumor circ_0015278 expression independently associated with favorable DFS (p = 0.026, hazard ratio = 0.529). Conclusion Circ_0015278 is reduced in tumor tissues, while its’ higher expression in tumor correlates with absence of extrathyroidal invasion, lower pT, pN, and pTNM stage, as well as prolonged DFS in PTC patients.
Collapse
Affiliation(s)
- Huajie Ding
- Department of Ultrasound, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Xiaojie Wang
- Department of Laboratory, Cheng De Medical College, Chengde, China
| | - Huiling Liu
- Department of Ultrasound, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Lei Na
- Department of Emergency, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|