1
|
Liu H, Liang C, Liu H, Liang P, Cheng H. MiR-10b-5p attenuates spinal cord injury and alleviates LPS-induced PC12 cells injury by inhibiting TGF-β1 decay and activating TGF-β1/Smad3 pathway through PTBP1. Eur J Med Res 2024; 29:554. [PMID: 39558432 PMCID: PMC11575087 DOI: 10.1186/s40001-024-02133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition characterized by significant sensory, motor, and autonomic dysfunctions, leading to severe physical, psychological, and financial burdens. The current therapeutic approaches for SCI show limited effectiveness, highlighting the urgent need for innovative treatments. MicroRNAs (miRNAs) like miR-10b-5p are known to play pivotal roles in gene expression regulation and have been implicated in various neurodegenerative diseases, including SCI. Polypyrimidine tract binding protein 1 (PTBP1) has also been associated with neural injury responses and recovery. This study aims to explore the interaction between miR-10b-5p and PTBP1 in the context of SCI, hypothesizing that miR-10b-5p regulates PTBP1 to influence SCI pathogenesis and recovery using a rat model of SCI and lipopolysaccharide (LPS)-induced PC12 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to measure miR-10b-5p levels, revealing its low expression in SCI rats. We then assessed neurological function, histopathological changes, and spinal cord water content. We found that administering the agomiR-10b-5p significantly improved neurological function and decreased the spinal cord water content and normal motor neuron loss in SCI rats. Additionally, we explored the functions of miR-10b-5p in LPS-treated PC12 cells. Our results showed that miR-10b-5p repressed LPS-stimulated apoptosis, inflammation, and oxidative stress in PC12 cells. PTBP1 was predicted as a potential target gene of miR-10b-5p using the TargetScan database. Pulldown and luciferase reporter assays further demonstrated that miR-10b-5p binds to the 3' untranslated region (UTR) of PTBP1. RT-qPCR revealed that miR-10b-5p negatively modulated PTBP1 expression both in vivo and in vitro. Furthermore, rescue assays indicated that miR-10b-5p alleviated SCI in rats and LPS-triggered injury in PC12 cells by downregulating PTBP1. We also investigated the regulation of miR-10b-5p and PTBP1 on the transforming growth factor-beta 1 (TGF-β1)/small mother against decapentaplegic (Smad3) pathway. We found that miR-10b-5p targeted PTBP1 to repress TGF-β1 decay and facilitated TGF-β1/Smad3 pathway activation. In conclusion, our results demonstrate that miR-10b-5p alleviates SCI by repressing TGF-β1 decay and inducing TGF-β1/Smad3 pathway activation through PTBP1 downregulation. This study provides novel insights into potential targeted therapy plans for SCI.
Collapse
Affiliation(s)
- Huandong Liu
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hongfei Liu
- Department of Encephalopathy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Ping Liang
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Huilin Cheng
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
2
|
Hu Z, Luo Y, Lin W, Wu X. IRF4 Suppresses Osteogenic Differentiation of Periodontal Ligament Stem Cells by Activating IL-18 Signaling Pathway in Periodontitis. Adv Biol (Weinh) 2024; 8:e2400099. [PMID: 39078121 DOI: 10.1002/adbi.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/30/2024] [Indexed: 07/31/2024]
Abstract
The present study aims to investigate the role of interferon regulatory factor 4 (IRF4) in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and analyze the underlying signaling of these processes. In this study, IRF4 is upregulated in periodontitis periodontal ligament tissues, as compared to healthy periodontal ligament tissues. IRF4 knockdown increases cell proliferation, decreases levels of tumor necrosis factor-alpha, interleukin-6, and interleukin-8, enhances osteogenic activity, and increases the expression of RUNX family transcription factor 2, Collagen I, and Osteocalcin in PDLSCs. The opposite results are observed in IRF4 overexpressed PDLSCs. Additionally, GSEA shows that IRF4 activates the interleukin-18 (IL-18) signaling pathway. The expressions of IL-18, B-cell translocation gene 2, interleukin-1beta, and caspase-3 are decreased by IRF4 knockdown, while increased by IRF4 overexpression. IL-18 overexpression eliminates the promoting effect of IRF4 knockdown on osteogenic differentiation of PDLSCs. In conclusion, IRF4 suppresses osteogenic differentiation of PDLSCs by activating the IL-18 signaling pathway.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Stomatology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Hangzhou), Hangzhou, Zhejiang, 310024, China
| | - Yongjie Luo
- Department of Outpatient & Emergency, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Hangzhou), Hangzhou, Zhejiang, 310024, China
| | - Wei Lin
- Department of Stomatology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Hangzhou), Hangzhou, Zhejiang, 310024, China
| | - Xiaolian Wu
- Zhongtai Street Health Service Center, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
3
|
Arya PN, Saranya I, Selvamurugan N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network. Differentiation 2024; 140:100803. [PMID: 39089986 DOI: 10.1016/j.diff.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Osteogenic differentiation is a crucial process in the formation of the skeleton and the remodeling of bones. It relies on a complex system of signaling pathways and transcription factors, including Runt-related transcription factor 2 (RUNX2). Non-coding RNAs (ncRNAs) control the bone-specific transcription factor RUNX2 through post-transcriptional mechanisms to regulate osteogenic differentiation. The most research has focused on microRNAs (miRNAs) and long ncRNAs (lncRNAs) in studying how they regulate RUNX2 for osteogenesis in both normal and pathological situations. This article provides a concise overview of the recent advancements in understanding the critical roles of lncRNA/miRNA/axes in controlling the expression of RUNX2 during bone formation. The possible application of miRNAs and lncRNAs as therapeutic agents for the treatment of disorders involving the bones and bones itself is also covered.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Zheng F, Wu T, Wang F, Li H, Tang H, Cui X, Li C, Wang Y, Jiang J. Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1. Front Bioeng Biotechnol 2024; 12:1347406. [PMID: 38694622 PMCID: PMC11061374 DOI: 10.3389/fbioe.2024.1347406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli. One notable mechano-sensitive ion channel, Piezo1, can modulate cellular function in response to mechanical cues. This study aimed to elucidate the involvement of Piezo1 in the osteogenic response of force-treated PDLCs when stimulated by LIPUS. Method After establishing rat OTM models, LIPUS was used to stimulate rats locally. OTM distance and alveolar bone density were assessed using micro-computed tomography, and histological analyses included hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining and immunohistochemical staining. GsMTx4 and Yoda1 were respectively utilized for Piezo1 functional inhibition and activation experiments in rats. We isolated human PDLCs (hPDLCs) in vitro and evaluated the effects of LIPUS on the osteogenic differentiation of force-treated hPDLCs using real-time quantitative PCR, Western blot, alkaline phosphatase and alizarin red staining. Small interfering RNA and Yoda1 were employed to validate the role of Piezo1 in this process. Results LIPUS promoted osteoclast differentiation and accelerated OTM in rats. Furthermore, LIPUS alleviated alveolar bone resorption under pressure and enhanced osteogenesis of force-treated PDLCs both in vivo and in vitro by downregulating Piezo1 expression. Subsequent administration of GsMTx4 in rats and siPIEZO1 transfection in hPDLCs attenuated the inhibitory effect on osteogenic differentiation under pressure, whereas LIPUS efficacy was partially mitigated. Yoda1 treatment inhibited osteogenic differentiation of hPDLCs, resulting in reduced expression of Collagen Ⅰα1 and osteocalcin in the periodontal ligament. However, LIPUS administration was able to counteract these effects. Conclusion This research unveils that LIPUS promotes the osteogenesis of force-treated PDLCs via downregulating Piezo1.
Collapse
Affiliation(s)
- Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Feifei Wang
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Xinyu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Cuiying Li
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
| | - Yixiang Wang
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| |
Collapse
|
5
|
Yang H, Chen Y, Zhao A, Cheng T, Zhou J, Li Z. Construction of a diagnostic model based on random forest and artificial neural network for peri-implantitis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:214-226. [PMID: 38597081 PMCID: PMC11034404 DOI: 10.7518/hxkq.2024.2023275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVES This study aimed to reveal critical genes regulating peri-implantitis during its development and construct a diagnostic model by using random forest (RF) and artificial neural network (ANN). METHODS GSE-33774, GSE106090, and GSE57631 datasets were obtained from the GEO database. The GSE33774 and GSE106090 datasets were analyzed for differential expression and functional enrichment. The protein-protein interaction networks (PPI) and RF screened vital genes. A diagnostic model for peri-implantitis was established using ANN and validated on the GSE33774 and GSE57631 datasets. A transcription factor-gene interaction network and a transcription factor-micro-RNA (miRNA) regulatory network were also established. RESULTS A total of 124 differentially expressed genes (DEGs) involved in the regulation of peri-implantitis were screened. Enrichment analysis showed that DEGs were mainly associated with immune receptor activity and cytokine receptor activity and were mainly involved in processes such as leukocyte and neutrophil migration. The PPI and RF screened six essential genes, namely, CD38, CYBB, FCGR2A, SELL, TLR4, and CXCL8. The receiver operating characteristic curve (ROC) indicated that the ANN model had an excellent diagnostic performance. FOXC1, GATA2, and NF-κB1 may be essential transcription factors in peri-implantitis, and hsa-miR-204 may be a key miRNA. CONCLUSIONS The diagnostic model of peri-implantitis constructed by RF and ANN has high confidence, and CD38, CYBB, FCGR2A, SELL, TLR4, and CXCL8 are potential diagnostic markers. FOXC1, GATA2, and NF-κB1 may be essential transcription factors in peri-implantitis, and hsa-miR-204 plays a vital role as a critical miRNA.
Collapse
Affiliation(s)
- Haoran Yang
- Stomatological Hospital of Kunming Medical University, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Stomatology, Kunming 650000, China
| | - Yuxiang Chen
- Stomatological Hospital of Kunming Medical University, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Stomatology, Kunming 650000, China
| | - Anna Zhao
- Stomatological Hospital of Kunming Medical University, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Stomatology, Kunming 650000, China
| | - Tingting Cheng
- Stomatological Hospital of Kunming Medical University, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Stomatology, Kunming 650000, China
| | - Jianzhong Zhou
- Stomatological Hospital of Kunming Medical University, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Stomatology, Kunming 650000, China
| | - Ziliang Li
- Stomatological Hospital of Kunming Medical University, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Stomatology, Kunming 650000, China
| |
Collapse
|
6
|
Huang X, He W, Fan S, Li H, Ye G. IGF2BP3-mediated enhanced stability of MYLK represses MSC adipogenesis and alleviates obesity and insulin resistance in HFD mice. Cell Mol Life Sci 2024; 81:17. [PMID: 38196046 PMCID: PMC10776757 DOI: 10.1007/s00018-023-05076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Mesenchymal stem cells (MSCs) hold immense potential as multipotent stem cells and serve as a primary source of adipocytes. The process of MSC adipogenesis plays a crucial role in maintaining systemic metabolic homeostasis and has garnered significant attention in tissue bioengineering. N6-methyladenosine (m6A), the most prevalent RNA modification, is known to regulate cell fate and disease. However, the precise involvement of m6A readers in MSC adipogenesis remains unclear. In this study, we investigated the impact of IGF2BP3, a prominent m6A reader, on MSC adipogenesis. Our findings revealed a decrease in IGF2BP3 expression during the natural adipogenic differentiation of MSCs. Furthermore, IGF2BP3 was found to repress MSC adipogenesis by augmenting the levels of MYLK, a calcium/calmodulin-dependent kinase. Mechanistically, IGF2BP3 interacted with MYLK mRNA in an m6A-dependent manner, extending its half-life and subsequently inhibiting the phosphorylation of the ERK1/2 pathway, thereby impeding the adipogenic differentiation of MSCs. Additionally, we successfully achieved the overexpression of IGF2BP3 through intraperitoneal injection of adeno-associated virus serotype Rec2, which specifically targeted adipose tissue. This intervention resulted in reduced body weight and improved insulin resistance in high-fat diet mice. Overall, our study provides novel insights into the role of IGF2BP3 in MSC adipogenesis, shedding light on adipocyte-related disorders and presenting potential targets for related biomedical applications.
Collapse
Affiliation(s)
- Xiuji Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Hui Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| |
Collapse
|
7
|
Fasciano S, Luo S, Wang S. Long non-coding RNA (lncRNA) MALAT1 in regulating osteogenic and adipogenic differentiation using a double-stranded gapmer locked nucleic acid nanobiosensor. Analyst 2023; 148:6261-6273. [PMID: 37937546 DOI: 10.1039/d3an01531a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Long non-coding RNAs (lncRNA) are non-protein coding RNA molecules that are longer than 200 nucleotides. The lncRNA molecule plays diverse roles in gene regulation, chromatin remodeling, and cellular processes, influencing various biological pathways. However, probing the complex dynamics of lncRNA in live cells is a challenging task. In this study, a double-stranded gapmer locked nucleic acid (ds-GapM-LNA) nanobiosensor is designed for visualizing the abundance and expression of lncRNA in live human bone-marrow-derived mesenchymal stem cells (hMSCs). The sensitivity, specificity, and stability were characterized. The results showed that this ds-GapM-LNA nanobiosensor has very good sensitivity, specificity, and stability, which allows for dissecting the regulatory roles of cellular processes during dynamic physiological events. By incorporating this nanobiosensor in living hMSC imaging, we elucidated lncRNA MALAT1 expression dynamics during osteogenic and adipogenic differentiation. The data reveal that lncRNA MALAT1 expression is correlated with distinct sub-stages of osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
- Department of Cellular and Molecular Biology, College of Art and Science, University of New Haven, West Haven, CT, 06516, USA
| | - Shuai Luo
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
8
|
Li Y, Wang X, Pan C, Yuan H, Li X, Chen Z, He H. Myoblast-derived exosomal Prrx2 attenuates osteoporosis via transcriptional regulation of lncRNA-MIR22HG to activate Hippo pathway. Mol Med 2023; 29:54. [PMID: 37081396 PMCID: PMC10116833 DOI: 10.1186/s10020-023-00649-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Sarcopenia and osteoporosis are common diseases that predominantly affect older individuals. The interaction between muscle and skeleton exerts pivotal roles in bone remodeling. This study aimed to explore the function of myoblast-derived exosomal Prrx2 in osteogenic differentiation and its potential mechanisms. METHODS Exosomes were isolated from myogenic differentiated C2C12 cells. qRT-PCR and Western blotting were used to determine target molecule expression. Osteogenic differentiation of BMSCs was evaluated by Alizarin red staining, ALP activity and levels of OCN, OPN, RUNX2, and BMP2. Dual-luciferase reporter assay, RIP, and ChIP assays were performed to verify the interaction between molecules. The nuclear translocation of YAP1 was observed by immunofluorescence staining. In vivo osteoporotic model was established by ovariectomy in mice. Bone loss was examined using HE staining. RESULTS Prrx2 expression was elevated in myogenic differentiated C2C12 cells and their exosomes. Myoblast-derived exosomal Prrx2 enhanced osteogenic differentiation of BMSCs. Delivering exosomal Prrx2 directly bond to MIR22HG promoter and promoted its transcription and expression. MIR22HG enhanced expression and nuclear translocation of YAP via sponging miR-128, thus facilitating BMSC osteogenic differentiation. Knockdown of exosomal Prrx2 suppressed osteogenic differentiation, which could be abolished by MIR22HG overexpression. Similarly, miR-128 inhibitor or YAP overexpression reversed the inhibitory effect of MIR22HG depletion or miR-128 mimics on osteogenic differentiation. Finally, myoblast-derived exosomal Prrx2 alleviated osteoporosis in mice via up-regulating MIR22HG and activating the Hippo pathway. CONCLUSION Myoblast-derived exosomal Prrx2 contributes to transcriptional activation of MIR22HG to activate YAP pathway via sponging miR-128, thereby facilitating osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yunchao Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China.
| | - Xiaoxiao Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Changyu Pan
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Hui Yuan
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Xinyi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Zejun Chen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Haoyu He
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| |
Collapse
|
9
|
Huang X, Huang X, Guo H, Li J, Zhou C, Huang Y, Lai C, Zeng W, Tan X, Niu L, Li H, Qi J, Xie C. Intermittent hypoxia-induced METTL3 downregulation facilitates MGLL-mediated lipolysis of adipocytes in OSAS. Cell Death Dis 2022; 8:352. [PMID: 35933406 PMCID: PMC9357002 DOI: 10.1038/s41420-022-01149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Intermittent hypoxia (IH) is the core pathological feature of obstructive sleep apnea syndrome (OSAS), and insulin resistance (IR) is the most common metabolic complication of OSAS. Studies have shown that the levels of free fatty acids (FFAs), which are mainly released from adipocytes by lipolysis, are elevated in OSAS and play an important role in the development of IR. However, whether and how IH regulates adipocyte lipolysis in OSAS is not clear. Here, we revealed that the apnea hypopnea index was positively correlated with the serum levels of FFAs and FFA release from adipocytes in OSAS. In addition, IH facilitated lipolysis and FFA release from adipocytes by downregulating the level of METTL3. METTL3 downregulation impaired N6-methyladenosine (m6A) levels in MGLL mRNA and reduced MGLL expression, thereby promoting lipolysis. In addition, we identified YTHDF2 as the m6A reader that interacts with MGLL mRNA, accelerating its degradation. Furthermore, our data showed reduced levels of METTL3 and elevated levels of MGLL in the adipose tissues of OSAS patients and indicated an effect of METTL3 on lowering FFA levels and improving IR in rats with chronic IH. In conclusion, our study provides new insights into the development and treatment of IR in OSAS.
Collapse
Affiliation(s)
- Xiuji Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xuming Huang
- Department of Thyroid and Vascular Surgery, Maoming People's Hospital, Southern Medical University, Maoming, 525000, P.R. China
| | - Haiyan Guo
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Jin Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Chunxia Zhou
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Yuanli Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Chunliu Lai
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Wan Zeng
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xiaozhen Tan
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Lihong Niu
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Hui Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | - Jian Qi
- Department of Gastroenterology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | - Canmao Xie
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| |
Collapse
|
10
|
Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 2022; 23:425. [PMID: 35672672 PMCID: PMC9172120 DOI: 10.1186/s12864-022-08646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays crucial role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), involving in regulation of competing endogenous RNA (ceRNA) mechanisms and conduction of signaling pathways. However, its mechanisms are poorly understood. This study aimed to investigate lncRNAs, miRNAs and mRNAs expression profiles in rat BMMSCs (rBMMSCs) osteogenic differentiation, screen the potential key lncRNA-miRNA-mRNA networks, explore the putative functions and identify the key molecules, as the basis of studying potential mechanism of rBMMSCs osteogenic differentiation driven by lncRNA, providing molecular targets for the management of bone defect. Methods High-throughput RNA sequencing (RNA-seq) was used to determine lncRNAs, miRNAs, and mRNAs expression profiles at 14-day rBMMSCs osteogenesis. The pivotal lncRNA-miRNA and miRNA-mRNA networks were predicted from sequencing data and bioinformatic analysis, and the results were exported by Cytoscape 3.9.0 software. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for functional exploration. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate lncRNAs, miRNAs and mRNAs. Results rBMMSCs were identified, and the osteogenic and adipogenic differentiation ability were detected. A total of 8634 lncRNAs were detected by RNA-seq, and 1524 differential expressed lncRNAs, of which 812 up-regulated and 712 down-regulated in osteo-inductive groups compared with control groups. 30 up-regulated and 61 down-regulated miRNAs, 91 miRNAs were differentially expressed in total. 2453 differentially expressed mRNAs including 1272 up-expressed and 1181 down-expressed were detected. 10 up-regulated lncRNAs were chosen to predict 21 down-regulated miRNAs and 650 up-regulated mRNAs. 49 lncRNA-miRNA and 1515 miRNA–mRNA interactive networks were constructed. GO analysis showed the most important enrichment in cell component and molecular function were “cytoplasm” and “protein binding”, respectively. Biological process related to osteogenic differentiation such as “cell proliferation”, “wound healing”, “cell migration”, “osteoblast differentiation”, “extracellular matrix organization” and “response to hypoxia” were enriched. KEGG analysis showed differentially expressed genes were mainly enriched in “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells”, “cGMP-PKG signaling pathway”, “Axon guidance” and “Calcium signaling pathway”. qRT-PCR verified that lncRNA Tug1, lncRNA AABR07011996.1, rno-miR-93-5p, rno-miR-322-5p, Sgk1 and Fzd4 were consistent with the sequencing results, and 4 lncRNA-miRNA-mRNA networks based on validations were constructed, and enrichment pathways were closely related to “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells” and “Wnt signaling pathway”. Conclusions lncRNAs, miRNAs and mRNAs expression profiles provide clues for future studies on their roles for BMMSCs osteogenic differentiation. Furthermore, lncRNA–miRNA–mRNA networks give more information on potential new mechanisms and targets for management on bone defect. Supplementary information The online version contains supplementary material available at 10.1186/s12864-022-08646-x.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yuan Yao
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Jinyong Huang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Hao Sun
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yixuan Pu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Mengting Tian
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Meijie Zheng
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Huiyu He
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| | - Zheng Li
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| |
Collapse
|
11
|
Fu D, Huang X, Lv Z, Zhang Y, Chen M, Zhang W, Su D. Ultrasound and magnetic resonance imaging of cyclic arginine glycine aspartic acid-gadopentetic acid-polylactic acid in human breast cancer by targeting αvβ3 in xenograft-bearing nude mice. Bioengineered 2022; 13:7105-7117. [PMID: 35259049 PMCID: PMC8973589 DOI: 10.1080/21655979.2022.2045832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Effective early detection shows the potential to reduce breast cancer mortality. This study aimed to establish a targeted contrast agent for Magnetic Resonance Imaging (MRI)/ultrasound dual-modality molecular radiography for breast cancer. The cyclic arginine-glycine-aspartate-gadopentetic acid-polylactic acid (cRGD and Gd-DTPA) coated by multi-functional blank poly (lactic-co-glycolic acid) (PLGA) nanoparticles) was successfully constructed by chemical synthesis method with high stability. The safety of cRGD-Gd-DTPA-PLGA was demonstrated in vitro and in vivo, and their affinity to breast cancer cells was revealed. Moreover, MRI/ultrasound dual-modality molecular radiography in vitro showed that as the concentration of contrast agent increased, the echo enhancement and signal intensity of MRI imaging were also elevated. The mouse models of human breast cancer also indicated significant target enhancements of cRGD-Gd-DTPA-PLGA magnetic nanoparticles in the mouse tumor. Thus, cRGD-Gd-DTPA-PLGA magnetic nanoparticles were suggested as qualified MRI/ultrasound dual-modality molecular radiography contrast agent. We further explored the targeting mechanism of cRGD-Gd-DTPA-PLGA in breast cancer. The results showed that αvβ3 was highly expressed in breast cancer tissues, and cRGD-Gd-DTPA-PLGA used for MRI/ultrasound dual-modality molecular radiography by targeting αvβ3. Additionally, we found that the signal-to-noise ratio of MRI was positively correlated with microvessel density (MVD). The cRGD-Gd-DTPA-PLGA dynamicly and quantitatively monitored breast cancer by monitoring the state of neovascularization. In conclusion, in the present study, we successfully constructed the cRGD-Gd-DTPA-PLGA magnetic nanoparticles for MRI/ultrasound dual-modality molecular radiography. The cRGD-Gd-DTPA-PLGA showed potential in early detection and diagnosis of metastasis, and dynamic evaluation of the efficacy of molecular targeted therapy of integrin αvβ3.
Collapse
Affiliation(s)
- Danhui Fu
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| | - Xiangyang Huang
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| | - Zheng Lv
- Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Yupeng Zhang
- Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Miao Chen
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Danke Su
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| |
Collapse
|
12
|
The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process. Mol Biol Rep 2022; 49:2443-2453. [PMID: 34973122 PMCID: PMC8863721 DOI: 10.1007/s11033-021-07013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Tissue engineered bone brings hope to the treatment of bone defects, and the osteogenic differentiation of stem cells is the key link. Inducing osteogenic differentiation of stem cells may be a potential approach to promote bone regeneration. In recent years, lncRNA has been studied in the field increasingly, which is believed can regulate cell cycle, proliferation, metastasis, differentiation and immunity, participating in a variety of physiology and pathology processes. At present, it has been confirmed that certain lncRNAs regulate the osteogenesis of stem cells and take part in mediating signaling pathways including Wnt/β-catenin, MAPK, TGF-β/BMP, and Notch pathways. Here, we provided an overview of lncRNA, reviewed its researches in the osteogenic differentiation of stem cells, emphasized the importance of lncRNA in bone regeneration, and focused on the roles of lncRNA in signaling pathways, in order to make adequate preparations for applying lncRNA to bone tissue Engineering, letting it regulate the osteogenic differentiation of stem cells for bone regeneration.
Collapse
|
13
|
Dai Z, Wei G. Inhibition of miRNA-100 facilitates bone regeneration defects of mesenchymal stem cells in osteoporotic mice through the protein kinase B pathway. Bioengineered 2022; 13:963-973. [PMID: 35132915 PMCID: PMC8974201 DOI: 10.1080/21655979.2021.2015880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Osteoporotic patients suffer from bone microstructure damage and are prone to fracture and bone defect. Due to the damage of bone healing ability, the bone repair of osteoporotic patients is usually slow. Here we aimed to explore the function and potential molecular mechanism of miR-100 in osteogenic differentiation ability of bone marrow stem cells (BMSCs). Ovariectomy was performed on mice to induce osteoporosis. BMSCs were extracted from normal and ovariectomized (OVX) mice to examine the effect of microRNA (miR)-100 on BMSC osteogenic differentiation. Hematoxylin and eosin (H&E) staining and safranin O-fast green staining assays were performed on femur tissues to reveal pathological changes. The osteogenic differentiation of BMSCs were determined by Alkaline Phosphatase and Alizarin red staining assays. The results showed that miR-100 expression was significantly upregulated in bone tissues and BMSCs from osteoporotic mice. MiR-100 knockdown partially improved osteogenic function of OVX mice-derived BMSCs. Next, mechanistic target of rapamycin kinase (MTOR) was identified as the target downstream miR-100. MiR-100 deficiency can activate the protein kinase B (AKT)/mTOR pathway. MiR-100 controlled the osteogenic function of BMSCs by the AKT/mTOR pathway. Collectively, our findings demonstrate that inhibition of miR-100 facilitates bone regeneration defects of BMSCs in osteoporotic mice through AKT pathway, indicating that miR-100 might be an effective target for the treatment of osteoporotic mandibular injury and bone defect diseases.
Collapse
Affiliation(s)
- Zhengqiu Dai
- Department of Orthopedic, Taizhou Second People's Hospital, Taizhou, Jiangsu, China
| | - Guoqiang Wei
- Department of Plastic Surgery, First Ward, Xi'an International Medical Center Plastic Surgery Hospital, Xi'an, Shanxi, China
| |
Collapse
|
14
|
Chen X, Hu Y, Geng Z, Su J. The "Three in One" Bone Repair Strategy for Osteoporotic Fractures. Front Endocrinol (Lausanne) 2022; 13:910602. [PMID: 35757437 PMCID: PMC9218483 DOI: 10.3389/fendo.2022.910602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
In aging society, osteoporotic fractures have become one major social problem threatening the health of the elderly population in China. Compared with conventional fractures, low bone mass, bone defect and retarded healing issues of osteoporotic fractures lead to great difficulties in treatment and rehabilitation. Addressing major concerns in clinical settings, we proposed the "three in one" bone repair strategy focusing on anti-osteoporosis therapies, appropriate bone grafting and fracture healing accelerating. We summarize misconceptions and repair strategies for osteoporotic fracture management, expecting improvement of prognosis and clinical outcomes for osteoporotic fractures, to further improve therapeutic effect and living quality of patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Jiacan Su,
| |
Collapse
|
15
|
Zhang X, Zhang Y, Yang L, Wu Y, Ma X, Tong G, Ban Z, Zhao H. IRF4 suppresses osteogenic differentiation of BM-MSCs by transcriptionally activating miR-636/DOCK9 axis. Clinics (Sao Paulo) 2022; 77:100019. [PMID: 35397366 PMCID: PMC8989710 DOI: 10.1016/j.clinsp.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Osteoblasts are derived from Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs), which play an indispensable role in bone formation. In this study, the authors aim to investigate the role of IRF4 in the osteogenic differentiation of BM-MSCs and its potential molecular mechanism. METHODS The authors used lentivirus infection to overexpress IRF4 in BM-MSCs. The expression of IRF4 and osteogenesis-related genes were detected by qRT-PCR and western blot analysis. The osteogenic differentiation of BM-MSCs was evaluated by Alkaline Phosphatase (ALP) activity, Alizarin red staining, and Alkaline Phosphatase (ALP) staining. Chromatin Immunoprecipitation (ChIP), Dual-Luciferase reporter assay and RNA Immunoprecipitation Assay were applied to confirm the regulatory mechanism between IRF4, miR-636 and DOCK9. RESULTS The authors found IRF4 was down-regulated during the osteogenic differentiation of BM-MSCs, and IRF4 overexpression could decrease the osteogenic differentiation of BM-MSCs by specifically promoting the reduction of Alkaline Phosphatase (ALP) activity and down-regulating osteogenic indicators, including OCN, OPN, Runx2 and CollA1. Mechanistically, IRF4 activated microRNA-636 (miR-636) expression via binding to its promoter region, and Dedicator of Cytokinesis 9 (DOCK9) was identified as the target of miR-636 in BM-MSCs. Moreover, the damage in the capacity of osteogenic differentiation of BM-MSCs induced by IRF4 overexpression could be rescued by miR-636 inhibition. CONCLUSIONS In summary, this paper proposed that IRF4/miR-636/DOCK9 may be considered as targets for the treatment of osteoporosis (OP).
Collapse
Affiliation(s)
- Xuepu Zhang
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Yue Zhang
- Dental Department, The Second Affiliated Hospital of Jinzhou Medical University, China
| | - Limin Yang
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Yuexin Wu
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Xiaohu Ma
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Gang Tong
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Zhaoliang Ban
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Haosen Zhao
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China.
| |
Collapse
|
16
|
Hao X, Li D, Zhang D, Jia L. Microarray analysis of long non-coding RNAs related to osteogenic differentiation of human dental pulp stem cells. J Dent Sci 2021; 17:733-743. [PMID: 35756759 PMCID: PMC9201533 DOI: 10.1016/j.jds.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) are candidate seed cells for bone tissue engineering, but the molecular regulation of osteogenic differentiation in DPSCs is not fully understood. Long non-coding RNAs (lncRNAs) are important regulators of gene expression, and whether they play roles in osteogenic differentiation of DPSCs requires more study. Materials and methods DPSCs were isolated and cultured. The mRNA and lncRNA expression profiles were compared through microarray assay between osteo-differentiated DPSCs and non-differentiated DPSCs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Gene ontology (GO) analyses, and the mRNA-lncRNA co-expression analyses were performed for functional annotation of differentially expressed RNAs. Small interfering RNA (siRNA) was used to interfere the expression of lncRNA ENST00000533992 (also named smooth muscle-induced lncRNA or SMILR), a candidate regulator, then the osteogenic differentiation potential of DPSCs was analyzed. Results DPSCs were isolated and cultured successfully. The expression of 273 mRNAs and 184 lncRNAs changed significantly in DPSCs after osteogenic induction. KEGG analyses and GO analyses showed that the differentially expressed RNAs were enriched in several pathways and biological processes. The mRNA-lncRNA co-expression network was constructed to reveal the potential relationships between mRNAs and lncRNAs. The osteogenic differentiation potential of DPSCs decreased when SMILR was interfered. Conclusion The present study provides clues for seeking for lncRNAs that participate in the regulation of osteogenic differentiation in DPSCs. LncRNA SMILR could play a role in regulating osteogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongfang Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Linglu Jia
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Corresponding author. School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China. Fax: +86 531 88382923.
| |
Collapse
|