1
|
Mizuno S, Bustos MA, Hayashi Y, Abe K, Furuhashi S, Naeini Y, Xu X, Bilchik AJ, Hoon DSB. Induced collagen type-I secretion by hepatocytes of the melanoma liver metastasis is associated with a reduction in tumour-infiltrating lymphocytes. Clin Transl Med 2024; 14:e70067. [PMID: 39496484 PMCID: PMC11534464 DOI: 10.1002/ctm2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Overall patients with melanoma liver metastasis (MLiM) have a dismal prognosis and poor responses to the standard of care treatment. Understanding the role of the tumour microenvironment (TME) is critical for discovering better strategies to overcome intrinsic therapy resistance in MLiM. The aim was to understand the crosstalk signalling pathways between hepatocytes and metastatic melanoma cells in the TME of MLiM. METHODS Hepatocytes and melanoma tumour cells of MLiM were assessed using transcriptomic NanoString GeoMx digital spatial profiling (NGDSP) assay. Functional assays were performed using normal hepatocytes and MLiM-derived cell lines. Validation was performed using multiplex immunofluorescence. RESULTS In NGDSP analysis adjacent normal hepatocytes (ANH) had higher CXCR4 and COL1A1/2 levels than distant normal hepatocytes (DNH), while melanoma cells had higher TNF-α levels. In vitro, MLiM cell lines released TNF-α which upregulated CXCR4 and CXCL12 levels in ANH. CXCL12 activated CXCR4, which triggered AKT and NFκB signalling pathways. Consequently, AKT signalling induced the upregulation of collagen type I. MLiM were significantly encircled by a shield of collagen, whereas other liver metastases showed reduced levels of collagen. Of all the liver metastasis analyzed, the presence of collagen in melanoma liver metastasis was associated with a reduction in tumour-infiltrating lymphocytes. CONCLUSIONS MLiM modified ANH to increase collagen production and created a physical barrier. The collagen barrier was associated with a reduction of immune cell infiltration which could potentially deter MLiM immune surveillance and treatment responses. HIGHLIGHTS Spatial analyses of melanoma liver metastasis show that adjacent normal hepatocytes have increased collagen-type I levels. Melanoma liver metastases tumour cells secrete enhanced levels of TNF-α to stimulate CXCR4/CXCL12 upregulation in adjacent normal hepatocytes. Activation of CXCR4 promotes AKT and NF-κB signalling pathways to promote collagen-type I secretion in adjacent normal hepatocytes. Elevated collagen levels were associated with reduced tumour-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Shodai Mizuno
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Matias A. Bustos
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Yoshinori Hayashi
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Kodai Abe
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Satoru Furuhashi
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Yalda Naeini
- Department of Surgical Pathologyat Providence SJHCSanta MonicaCaliforniaUSA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Anton J Bilchik
- Department of Gastrointestinal and Hepatobiliary Surgery, Providence SJHCSanta MonicaCaliforniaUSA
| | - Dave S. B. Hoon
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
- Department of Genome Sequencing CenterSJCI, Providence SJHCSanta MonicaCaliforniaUSA
| |
Collapse
|
2
|
Liu Y, Li Z, Zhang J, Liu W, Guan S, Zhan Y, Fang Y, Li Y, Deng H, Shen Z. DYNLL1 accelerates cell cycle via ILF2/CDK4 axis to promote hepatocellular carcinoma development and palbociclib sensitivity. Br J Cancer 2024; 131:243-257. [PMID: 38824222 PMCID: PMC11263598 DOI: 10.1038/s41416-024-02719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Disorder of cell cycle represents as a major driver of hepatocarcinogenesis and constitutes an attractive therapeutic target. However, identifying key genes that respond to cell cycle-dependent treatments still facing critical challenges in hepatocellular carcinoma (HCC). Increasing evidence indicates that dynein light chain 1 (DYNLL1) is closely related to cell cycle progression and plays a critical role in tumorigenesis. In this study, we explored the role of DYNLL1 in the regulation of cell cycle progression in HCC. METHODS We analysed clinical specimens to assess the expression and predictive value of DYNLL1 in HCC. The oncogenic role of DYNLL1 was determined by gain or loss-of-function experiments in vitro, and xenograft tumour, liver orthotopic, and DEN/CCl4-induced mouse models in vivo. Mass spectrometry analysis, RNA sequencing, co-immunoprecipitation assays, and forward and reverse experiments were performed to clarify the mechanism by which DYNLL1 activates the interleukin-2 enhancer-binding factor 2 (ILF2)/CDK4 signalling axis. Finally, the sensitivity of HCC cells to palbociclib and sorafenib was assessed by apoptosis, cell counting kit-8, and colony formation assays in vitro, and xenograft tumour models and liver orthotopic models in vivo. RESULTS DYNLL1 was significantly higher in HCC tissues than that in normal liver tissues and closely related to the clinicopathological features and prognosis of patients with HCC. Importantly, DYNLL1 was identified as a novel hepatocarcinogenesis gene from both in vitro and in vivo evidence. Mechanistically, DYNLL1 could interact with ILF2 and facilitate the expression of ILF2, then ILF2 could interact with CDK4 mRNA and delay its degradation, which in turn activates downstream G1/S cell cycle target genes CDK4. Furthermore, palbociclib, a selective CDK4/6 inhibitor, represents as a promising therapeutic strategy for DYNLL1-overexpressed HCC, alone or particularly in combination with sorafenib. CONCLUSIONS Our work uncovers a novel function of DYNLL1 in orchestrating cell cycle to promote HCC development and suggests a potential synergy of CDK4/6 inhibitor and sorafenib for the treatment of HCC patients, especially those with increased DYNLL1.
Collapse
Affiliation(s)
- Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jinchao Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Wei Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenyuan Guan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yizhi Zhan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
3
|
Liu SS, Wan QS, Lv C, Wang JK, Jiang S, Cai D, Liu MS, Wang T, Zhang KH. Integrating trans-omics, cellular experiments and clinical validation to identify ILF2 as a diagnostic serum biomarker and therapeutic target in gastric cancer. BMC Cancer 2024; 24:465. [PMID: 38622522 PMCID: PMC11017608 DOI: 10.1186/s12885-024-12175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Shao-Song Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Cong Lv
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Jin-Ke Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Dan Cai
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China.
| |
Collapse
|
4
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
5
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Shoji Y, Yokoe T, Kobayashi Y, Murakami T, Bostick PJ, Shiloh Y, Hoon DSB, Bustos MA. UBQLN4 promotes STING proteasomal degradation during cisplatin-induced DNA damage in triple-negative breast cancer. Clin Transl Med 2022; 12:e985. [PMID: 35839317 PMCID: PMC9286529 DOI: 10.1002/ctm2.985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 07/03/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Peter J Bostick
- Mayo Clinic Care Network, Baton Rouge General Medical Center, Baton Rouge, Louisiana, USA
| | - Yosef Shiloh
- David and Inez Myers Laboratory for Cancer Genetics, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| |
Collapse
|
7
|
Pancancer Analyses Reveal Genomics and Clinical Characteristics of the SETDB1 in Human Tumors. JOURNAL OF ONCOLOGY 2022; 2022:6115878. [PMID: 35656340 PMCID: PMC9152430 DOI: 10.1155/2022/6115878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022]
Abstract
Background. Malignant tumor is one of the most common diseases that seriously affect human health. The prior literature has reported the biological function and potential therapeutic targets of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) as an oncogene. However, SETDB1 has rarely been analyzed from a pan-cancer perspective. Methods. Bioinformatics analysis tools and databases, including GeneCards, National Center for Biotechnology Information (NCBI), UniProt, Illustrator for Biological Sequences (IBS), Human Protein Atlas (HPA), GEPIA, TIMER2, Sangerbox 3.0, UALCAN, Kaplan-Meier (K-M) plotter, cBioPortal, Catalogue Of Somatic Mutations In Cancer (COSMIC), PhosphoSitePlus, TISIDB, STRING, and GeneMANIA, were utilized to clarify the biological functions and clinical significance of SETDB1 from a pan-cancer perspective. Results. In this study, the pan-cancer analysis demonstrated that SETDB1 showed significantly differential expression in most tumor tissues and paracancerous tissues, and SETDB1 expression was associated with clinicopathological features and clinical prognosis. We also found that SETDB1 mutations occurred in most tumors and were related to tumorigenesis. In addition, DNA methylation of SETDB1 primarily occurred at the cg10444928 site and was associated with prognosis in several human tumors. The predicted phosphorylation site of SETDB1 was Ser1006. We found that SETDB1 was significantly related to the specific tumor-infiltrating immune cell populations and expression of clinically targetable immune checkpoints and may be a promising immunotherapy target. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses also indicated that SETDB1 may function as crucial regulator in carcinogenesis of human cancers. Conclusions. SETDB1 is an important oncogene involved in tumorigenesis and tumor progression through different biological mechanisms. Furthermore, SETDB1 may be a potential therapeutic target for cancer treatment.
Collapse
|
8
|
Yin X, Yang Z, Zhu M, Chen C, Huang S, Li X, Zhong H, Wen H, Sun Q, Yu X, Yan J. ILF2 Contributes to Hyperproliferation of Keratinocytes and Skin Inflammation in a KLHDC7B-DT-Dependent Manner in Psoriasis. Front Genet 2022; 13:890624. [PMID: 35586566 PMCID: PMC9110045 DOI: 10.3389/fgene.2022.890624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
Background: The extensive involvement of interleukin enhancer binding factor 2 (ILF2) in RNA stability and the inflammatory response is well documented. Aberrant long noncoding RNA (lncRNA) expression contributes to the pathogenesis of psoriasis. However, little is known about the role of ILF2 in psoriasis. Objective: To investigate the role of ILF2 and KLHDC7B-DT in psoriasis. Methods: LncRNA expression in psoriatic tissues was measured by lncRNA microarray and qRT-PCR. Normal human epidermal keratinocytes (NHEKs), HaCaT cells, and Ker-CT cells stimulated with M5 (IL-17A, IL-22, IL-1α, oncostatin M, and TNF-α) were used to establish a psoriasis model in vitro. Fluorescence in situ hybridization was used to detect the distribution of KLHDC7B-DT and ILF2 in keratinocytes. The proliferative effects of KLHDC7B-DT and ILF2 on keratinocytes were demonstrated by EdU assay and flow cytometry. ELISA was used to detect the secretion levels of cytokines. RNA pull-down and RNA immunoprecipitation (RIP) were used to detect the direct binding of KLHDC7B-DT with ILF2. Western blotting was used to detect the proteins related to STAT3/JNK signalling pathways. Results: ILF2 and KLHDC7B-DT were significantly overexpressed in psoriatic tissues and M5-induced keratinocytes. KLHDC7B-DT promoted the proliferation of keratinocytes and induced the secretion of IL-6 and IL-8. KLHDC7B-DT could directly bind to ILF2 and activate the STAT3 and JNK signalling pathways. KLHDC7B-DT expression was regulated by ILF2. M5-induced proliferation and inflammatory cytokine secretion in keratinocytes was inhibited after ILF2 knockdown. Furthermore, we found that ILF2 promoted keratinocyte proliferation and the inflammatory response in a KLHDC7B-DT-dependent manner. Conclusions: ILF2 and KLHDC7B-DT are involved in the hyperproliferation of keratinocytes and skin inflammation in psoriasis. In addition, ILF2 functions in a KLHDC7B-DT-dependent manner.
Collapse
Affiliation(s)
- Xiran Yin
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Zhenxian Yang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Mingsheng Zhu
- Department of Hand and Foot surgery, Shandong Provincial Hospital, Jinan, China
| | - Cheng Chen
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Hua Zhong
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - He Wen
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaojing Yu
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Zhang H, Che Y, Xuan B, Wu X, Li H. Serine hydroxymethyltransferase 2 (SHMT2) potentiates the aggressive process of oral squamous cell carcinoma by binding to interleukin enhancer-binding factor 2 (ILF2). Bioengineered 2022; 13:8785-8797. [PMID: 35333683 PMCID: PMC9161932 DOI: 10.1080/21655979.2022.2051886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial–mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Yilei Che
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Bin Xuan
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Hui Li
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
10
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|