1
|
Vu HN, Valdimarsson MM, Sigurbjörnsdóttir S, Bergsteinsdóttir K, Debbache J, Bismuth K, Swing DA, Hallsson JH, Larue L, Arnheiter H, Copeland NG, Jenkins NA, Heidarsson PO, Steingrímsson E. Novel mechanisms of MITF regulation identified in a mouse suppressor screen. EMBO Rep 2024; 25:4252-4280. [PMID: 39169200 PMCID: PMC11467436 DOI: 10.1038/s44319-024-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
MITF, a basic Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. We perform a genetic screen for suppressors of the Mitf-associated pigmentation phenotype in mice and identify an intragenic Mitf mutation that terminates MITF at the K316 SUMOylation site, leading to loss of the C-end intrinsically disordered region (IDR). The resulting protein is more nuclear but less stable than wild-type MITF and retains DNA-binding ability. As a dimer, it can translocate wild-type and mutant MITF partners into the nucleus, improving its own stability thus ensuring nuclear MITF supply. smFRET analysis shows interactions between K316 SUMOylation and S409 phosphorylation sites across monomers; these interactions largely explain the observed effects. The recurrent melanoma-associated E318K mutation in MITF, which affects K316 SUMOylation, also alters protein regulation in concert with S409. This suggests that residues K316 and S409 of MITF are impacted by SUMOylation and phosphorylation, respectively, mediating effects on nuclear localization and stability through conformational changes. Our work provides a novel mechanism of genetic suppression, and an example of how apparently deleterious mutations lead to normal phenotypes.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102, Reykjavík, Iceland
| | - Matti Már Valdimarsson
- Department of Biochemistry, Science Institute, School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Sara Sigurbjörnsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102, Reykjavík, Iceland
| | - Kristín Bergsteinsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102, Reykjavík, Iceland
| | - Julien Debbache
- Mammalian Development Section, NINDS, NIH, Bethesda, MD, 20892-3706, USA
| | - Keren Bismuth
- Mammalian Development Section, NINDS, NIH, Bethesda, MD, 20892-3706, USA
| | - Deborah A Swing
- Mouse Cancer Genetics Program, NCI, Frederick, MD, 21702-1201, USA
| | - Jón H Hallsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102, Reykjavík, Iceland
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, 91405, Orsay, France
| | - Heinz Arnheiter
- Mammalian Development Section, NINDS, NIH, Bethesda, MD, 20892-3706, USA
| | - Neal G Copeland
- Mouse Cancer Genetics Program, NCI, Frederick, MD, 21702-1201, USA
- Genetics Department, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nancy A Jenkins
- Mouse Cancer Genetics Program, NCI, Frederick, MD, 21702-1201, USA
- Genetics Department, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Petur O Heidarsson
- Department of Biochemistry, Science Institute, School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102, Reykjavík, Iceland.
| |
Collapse
|
2
|
Aboelfotouh HG, Abdallah M, Khalifa H, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. N 1-Benzoylated 5-(4-pyridinyl)indazole-based kinase inhibitors: Attaining haspin and Clk4 selectivity via modulation of the benzoyl substituents. Arch Pharm (Weinheim) 2024; 357:e2400020. [PMID: 38478964 DOI: 10.1002/ardp.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 06/04/2024]
Abstract
Haspin and Clk4 are both understudied protein kinases (PKs), offering potential targets for the development of new anticancer agents. Thus, the identification of new inhibitors targeting these PKs is of high interest. However, the inhibitors targeting haspin or Clk4 developed to date show a poor selectivity profile over other closely related PKs, increasing the risk of side effects. Herein, we present two newly developed N1-benzyolated 5-(4-pyridinyl)indazole-based inhibitors (18 and 19), derived from a newly identified indazole hit. These inhibitors exhibit an exceptional inhibitory profile toward haspin and/or Clk4. Compound 18 (2-acetyl benzoyl) showed a preference to inhibit Clk4 and haspin over a panel of closely related kinases, with sixfold selectivity for Clk4 (IC50 = 0.088 and 0.542 μM, respectively). Compound 19 (4-acetyl benzoyl) showed high selectivity against haspin over the common off-target kinases (Dyrks and Clks) with an IC50 of 0.155 μM for haspin. Molecular docking studies explained the remarkable selectivity of 18 and 19, elucidating how the new scaffold can be modified to toggle between inhibition of haspin or Clk4, despite the high homology of the ATP-binding sites. Their distinguished profile allows these compounds to be marked as interesting chemical probes to assess the selective inhibition of haspin and/or Clk4.
Collapse
Affiliation(s)
- Habiba G Aboelfotouh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mennatallah Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
3
|
Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine Growth Factor Rev 2023; 73:78-92. [PMID: 37696716 DOI: 10.1016/j.cytogfr.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Esophageal carcinoma is among the most fatal malignancies with increasing incidence globally. Tumor onset and progression can be driven by metabolic reprogramming, especially during esophageal carcinoma development. Exosomes, a subset of extracellular vesicles, display an average size of ∼100 nanometers, containing multifarious components (nucleic acids, proteins, lipids, etc.). An increasing number of studies have shown that exosomes are capable of transferring molecules with biological functions into recipient cells, which play crucial roles in esophageal carcinoma progression and tumor microenvironment that is a highly heterogeneous ecosystem through rewriting the metabolic processes in tumor cells and environmental stromal cells. The review introduces the reprogramming of glucose, lipid, amino acid, mitochondrial metabolism in esophageal carcinoma, and summarize current pharmaceutical agents targeting such aberrant metabolism rewiring. We also comprehensively overview the biogenesis and release of exosomes, and recent advances of exosomal cargoes and functions in esophageal carcinoma and their promising clinical application. Moreover, we discuss how exosomes trigger tumor growth, metastasis, drug resistance, and immunosuppression as well as tumor microenvironment remodeling through focusing on their capacity to transfer materials between cells or between cells and tissues and modulate metabolic reprogramming, thus providing a theoretical reference for the design potential pharmaceutical agents targeting these mechanisms. Altogether, our review attempts to fully understand the significance of exosome-based metabolic rewriting in esophageal carcinoma progression and remodeling of the tumor microenvironment, bringing novel insights into the prevention and treatment of esophageal carcinoma in the future.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China; Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; China Medical University, Shenyang 110122, Liaoning, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
4
|
Vu HN, Valdimarsson MM, Sigurbjörnsdóttir S, Bergsteinsdóttir K, Debbache J, Bismuth K, Swing DA, Hallsson JH, Larue L, Arnheiter H, Copeland NG, Jenkins NA, Heidarsson PO, Steingrímsson E. Novel mechanisms of MITF regulation and melanoma predisposition identified in a mouse suppressor screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551952. [PMID: 37786677 PMCID: PMC10541597 DOI: 10.1101/2023.08.04.551952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
MITF, a basic-Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. To explore MITF regulation and its role in melanoma, we conducted a genetic screen for suppressors of the Mitf-associated pigmentation phenotype. An intragenic Mitf mutation was identified, leading to termination of MITF at the K316 SUMOylation site and loss of the C-end intrinsically disordered region (IDR). The resulting protein is more nuclear but less stable than wild-type MITF and retains DNA-binding ability. Interestingly, as a dimer, it can translocate wild-type and mutant MITF partners into the nucleus, improving its own stability and ensuring an active nuclear MITF supply. Interactions between K316 SUMOylation and S409 phosphorylation sites across monomers largely explain the observed effects. Notably, the recurrent melanoma-associated E318K mutation in MITF, which affects K316 SUMOylation, also alters protein regulation in concert with S409, unraveling a novel regulatory mechanism with unexpected disease insights.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102 Reykjavík, Iceland
| | - Matti Már Valdimarsson
- Department of Biochemistry, Science Institute, School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Sara Sigurbjörnsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102 Reykjavík, Iceland
| | - Kristín Bergsteinsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102 Reykjavík, Iceland
| | - Julien Debbache
- Mammalian Development Section, NINDS, NIH, Bethesda, MD 20892-3706
| | - Keren Bismuth
- Mammalian Development Section, NINDS, NIH, Bethesda, MD 20892-3706
| | | | - Jón H. Hallsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102 Reykjavík, Iceland
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, 91405, Orsay, France
| | - Heinz Arnheiter
- Mammalian Development Section, NINDS, NIH, Bethesda, MD 20892-3706
| | - Neal G. Copeland
- Mouse Cancer Genetics Program, NCI, Frederick, MD 21702-1201
- Current address: Genetics Department, MD Anderson Cancer Center, Houston, TX 77030
| | - Nancy A. Jenkins
- Mouse Cancer Genetics Program, NCI, Frederick, MD 21702-1201
- Current address: Genetics Department, MD Anderson Cancer Center, Houston, TX 77030
| | - Petur O. Heidarsson
- Department of Biochemistry, Science Institute, School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 102 Reykjavík, Iceland
| |
Collapse
|
5
|
Song M, Pang L, Zhang M, Qu Y, Laster KV, Dong Z. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:148. [PMID: 37029108 PMCID: PMC10082069 DOI: 10.1038/s41392-023-01409-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Luping Pang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengmeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingzi Qu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Recent Advances in Cellular Signaling Interplay between Redox Metabolism and Autophagy Modulation in Cancer: An Overview of Molecular Mechanisms and Therapeutic Interventions. Antioxidants (Basel) 2023; 12:antiox12020428. [PMID: 36829987 PMCID: PMC9951923 DOI: 10.3390/antiox12020428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is a fundamental homeostatic process in which certain cellular components are ingested by double-membrane autophagosomes and then degraded to create energy or to maintain cellular homeostasis and survival. It is typically observed in nutrient-deprived cells as a survival mechanism. However, it has also been identified as a crucial process in maintaining cellular homeostasis and disease progression. Normal cellular metabolism produces reactive oxygen (ROS) and nitrogen species at low levels. However, increased production causes oxidative stress, which can lead to diabetes, cardiovascular diseases, neurological disorders, and cancer. It was recently shown that maintaining redox equilibrium via autophagy is critical for cellular responses to oxidative stress. However, little is understood about the molecular cancer processes that connect to the control of autophagy. In cancer cells, oncogenic mutations, carcinogens, and metabolic reprogramming cause increased ROS generation and oxidative stress. Recent studies have suggested that increased ROS generation activates survival pathways that promote cancer development and metastasis. Moreover, the relationship between metabolic programming and ROS in cancer cells is involved in redox homeostasis and the malignant phenotype. Currently, while the signaling events governing autophagy and how redox homeostasis affects signaling cascades are well understood, very little is known about molecular events related to autophagy. In this review, we focus on current knowledge about autophagy modulation and the role of redox metabolism to further the knowledge of oxidative stress and disease progression in cancer regulation. Therefore, this review focuses on understanding how oxidation/reduction events fine-tune autophagy to help understand how oxidative stress and autophagy govern cancer, either as processes leading to cell death or as survival strategies for maintaining redox homeostasis in cancer.
Collapse
|
7
|
Hu T, Niu Y, Fu J, Dong Z, He D, Liu J. Antisense lncRNA PCNA-AS1 promotes esophageal squamous cell carcinoma progression through the miR-2467-3p/PCNA axis. Open Med (Wars) 2022; 17:1483-1494. [PMID: 36213440 PMCID: PMC9490863 DOI: 10.1515/med-2022-0552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Multiple studies have indicated that long non-coding RNAs are aberrantly expressed in cancers and are pivotal in developing various tumors. No studies have investigated the expression and function of long non-coding antisense RNA PCNA-AS1 in esophageal squamous cell carcinoma (ESCC). In this study, the expression of PCNA-AS1 was identified by qRT–PCR. Cell function assays were used to explore the potential effect of PCNA-AS1 on ESCC progression. A prediction website was utilized to discover the relationships among PCNA-AS1, miR-2467-3p and proliferating cell nuclear antigen (PCNA). Dual luciferase reporter gene and RNA immunoprecipitation (RIP) assays were executed to verify the binding activity between PCNA-AS1, miR-2467-3p and PCNA. As a result, PCNA-AS1 was highly expressed in ESCC and was associated with patient prognosis. PCNA-AS1 overexpression strongly contributed to ESCC cell proliferation, invasion and migration. PCNA-AS1 and PCNA were positively correlated in ESCC. Bioinformatics analysis, RIP and luciferase reporter gene assays revealed that PCNA-AS1 could act as a competitive endogenous RNA to sponge miR-2467-3p, thus upregulating PCNA. In conclusion, the current outcome demonstrates that PCNA-AS1 may be a star molecule in the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|