1
|
Yang K, Zhu L, Liu C, Zhou D, Zhu Z, Xu N, Li W. Current status and prospect of the DNA double-strand break repair pathway in colorectal cancer development and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167438. [PMID: 39059591 DOI: 10.1016/j.bbadis.2024.167438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China
| | - Lihua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China
| | - Chang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dayang Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhu Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Xu
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China.
| | - Wenliang Li
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Hou C, Wu C, Zhu W, Pei H, Ma J. Systematic pan-cancer analysis reveals OGT and OGA as potential biomarkers for tumor microenvironment and therapeutic responses. Genes Dis 2024; 11:101089. [PMID: 38362042 PMCID: PMC10865246 DOI: 10.1016/j.gendis.2023.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 02/17/2024] Open
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
3
|
Chen L, Hu M, Chen L, Peng Y, Zhang C, Wang X, Li X, Yao Y, Song Q, Li J, Pei H. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar Saga continues. Cancer Lett 2024; 588:216742. [PMID: 38401884 DOI: 10.1016/j.canlet.2024.216742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), a dynamic post-translational modification (PTM), holds profound implications in controlling various cellular processes such as cell signaling, metabolism, and epigenetic regulation that influence cancer progression and therapeutic resistance. From the therapeutic perspective, O-GlcNAc modulates drug efflux, targeting and metabolism. By integrating signals from glucose, lipid, amino acid, and nucleotide metabolic pathways, O-GlcNAc acts as a nutrient sensor and transmits signals to exerts its function on genome stability, epithelial-mesenchymal transition (EMT), cell stemness, cell apoptosis, autophagy, cell cycle. O-GlcNAc also attends to tumor microenvironment (TME) and the immune response. At present, several strategies aiming at targeting O-GlcNAcylation are under mostly preclinical evaluation, where the newly developed O-GlcNAcylation inhibitors markedly enhance therapeutic efficacy. Here we systematically outline the mechanisms through which O-GlcNAcylation influences therapy resistance and deliberate on the prospects and challenges associated with targeting O-GlcNAcylation in future cancer treatments.
Collapse
Affiliation(s)
- Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Mengxue Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Cai Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
4
|
Wu C, Li J, Lu L, Li M, Yuan Y, Li J. OGT and OGA: Sweet guardians of the genome. J Biol Chem 2024; 300:107141. [PMID: 38447797 PMCID: PMC10981121 DOI: 10.1016/j.jbc.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The past 4 decades have witnessed tremendous efforts in deciphering the role of O-GlcNAcylation in a plethora of biological processes. Chemists and biologists have joined hand in hand in the sweet adventure to unravel this unique and universal yet uncharted post-translational modification, and the recent advent of cutting-edge chemical biology and mass spectrometry tools has greatly facilitated the process. Compared with O-GlcNAc, DNA damage response (DDR) is a relatively intensively studied area that could be traced to before the elucidation of the structure of DNA. Unexpectedly, yet somewhat expectedly, O-GlcNAc has been found to regulate various DDR pathways: homologous recombination, nonhomologous end joining, base excision repair, and translesion DNA synthesis. In this review, we first cover the recent structural studies of the O-GlcNAc transferase and O-GlcNAcase, the elegant duo that "writes" and "erases" O-GlcNAc modification. Then we delineate the intricate roles of O-GlcNAc transferase and O-GlcNAcase in DDR. We envision that this is only the beginning of our full appreciation of how O-GlcNAc regulates the blueprint of life-DNA.
Collapse
Affiliation(s)
- Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China.
| | - Jiaheng Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Lingzi Lu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyuan Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
5
|
Zhu Z, Li S, Yin X, Sun K, Song J, Ren W, Gao L, Zhi K. Review: Protein O-GlcNAcylation regulates DNA damage response: A novel target for cancer therapy. Int J Biol Macromol 2024; 264:130351. [PMID: 38403231 DOI: 10.1016/j.ijbiomac.2024.130351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The DNA damage response (DDR) safeguards the stable genetic information inheritance by orchestrating a complex protein network in response to DNA damage. However, this mechanism can often hamper the effectiveness of radiotherapy and DNA-damaging chemotherapy in destroying tumor cells, causing cancer resistance. Inhibiting DDR can significantly improve tumor cell sensitivity to radiotherapy and DNA-damaging chemotherapy. Thus, DDR can be a potential target for cancer treatment. Post-translational modifications (PTMs) of DDR-associated proteins profoundly affect their activity and function by covalently attaching new functional groups. O-GlcNAcylation (O-linked-N-acetylglucosaminylation) is an emerging PTM associated with adding and removing O-linked N-acetylglucosamine to serine and threonine residues of proteins. It acts as a dual sensor for nutrients and stress in the cell and is sensitive to DNA damage. However, the explanation behind the specific role of O-GlcNAcylation in the DDR remains remains to be elucidated. To illustrate the complex relationship between O-GlcNAcylation and DDR, this review systematically describes the role of O-GlcNAcylation in DNA repair, cell cycle, and chromatin. We also discuss the defects of current strategies for targeting O-GlcNAcylation-regulated DDR in cancer therapy and suggest potential directions to address them.
Collapse
Affiliation(s)
- Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaopeng Yin
- Department of Oral and Maxillofacial Surgery, Central Laboratory of Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan 250001, Shandong Province, China
| | - Kai Sun
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jianzhong Song
- Department of Oral and Maxilloafacial Surgery, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|