1
|
Chen G, Wang W, Wei X, Chen Y, Peng L, Qu R, Luo Y, He S, Liu Y, Du J, Lu R, Li S, Fan C, Chen S, Dai Y, Yang L. Single-cell transcriptomic analysis reveals that the APP-CD74 axis promotes immunosuppression and progression of testicular tumors. J Pathol 2024; 264:250-269. [PMID: 39161125 DOI: 10.1002/path.6343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Testicular tumors represent the most common malignancy among young men. Nevertheless, the pathogenesis and molecular underpinning of testicular tumors remain largely elusive. We aimed to delineate the intricate intra-tumoral heterogeneity and the network of intercellular communication within the tumor microenvironment. A total of 40,760 single-cell transcriptomes were analyzed, encompassing samples from six individuals with seminomas, two patients with mixed germ cell tumors, one patient with a Leydig cell tumor, and three healthy donors. Five distinct malignant subclusters were identified in the constructed landscape. Among them, malignant 1 and 3 subclusters were associated with a more immunosuppressive state and displayed worse disease-free survival. Further analysis identified that APP-CD74 interactions were significantly strengthened between malignant 1 and 3 subclusters and 14 types of immune subpopulations. In addition, we established an aberrant spermatogenesis trajectory and delineated the global gene alterations of somatic cells in seminoma testes. Sertoli cells were identified as the somatic cell type that differed the most from healthy donors to seminoma testes. Cellular communication between spermatogonial stem cells and Sertoli cells is disturbed in seminoma testes. Our study delineates the intra-tumoral heterogeneity and the tumor immune microenvironment in testicular tumors, offering novel insights for targeted therapy. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Wei
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yulin Chen
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Liao Peng
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rui Qu
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yi Luo
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shengyin He
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yugao Liu
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Jie Du
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Ran Lu
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Siying Li
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Chuangwen Fan
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sujun Chen
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yi Dai
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Luo Yang
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
2
|
Otsuji K, Takahashi Y, Osako T, Kobayashi T, Takano T, Saeki S, Yang L, Baba S, Kumegawa K, Suzuki H, Noda T, Takeuchi K, Ohno S, Ueno T, Maruyama R. Serial single-cell RNA sequencing unveils drug resistance and metastatic traits in stage IV breast cancer. NPJ Precis Oncol 2024; 8:222. [PMID: 39363009 PMCID: PMC11450160 DOI: 10.1038/s41698-024-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Metastasis is a complex process that remains poorly understood at the molecular levels. We profiled single-cell transcriptomic, genomic, and epigenomic changes associated with cancer cell progression, chemotherapy resistance, and metastasis from a Stage IV breast cancer patient. Pretreatment- and posttreatment-specimens from the primary tumor and distant metastases were collected for single-cell RNA sequencing and subsequent cell clustering, copy number variation (CNV) estimation, transcriptomic factor estimation, and pseudotime analyses. CNV analysis revealed that a small population of pretreatment cancer cells resisted chemotherapy and expanded. New clones including Metastatic Precursor Cells (MPCs), emerged in the posttreatment primary tumors in CNV similar to metastatic cells. MPCs exhibited expression profiles indicative of epithelial-mesenchymal transition. Comparison of MPCs with metastatic cancer cells also revealed dynamic changes in transcription factors and calcitonin pathway gene expression. These findings demonstrate the utility of single-patient clinical sample analysis for understanding tumor drug resistance, regrowth, and metastasis.
Collapse
Affiliation(s)
- Kazutaka Otsuji
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Takahashi
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Kobayashi
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshimi Takano
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sumito Saeki
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Noda
- Director's room, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinji Ohno
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Ueno
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
3
|
Li YS, Lai WP, Yin K, Zheng MM, Tu HY, Guo WB, Li L, Lin SH, Wang Z, Zeng L, Jiang BY, Chen ZH, Zhou Q, Zhang XC, Yang JJ, Zhong WZ, Yang XN, Wang BC, Pan Y, Chen HJ, Xiao FM, Sun H, Sun YL, Bai XY, Ke EE, Lin JX, Liu SYM, Li Y, Luo OJ, Wu YL. Lipid-associated macrophages for osimertinib resistance and leptomeningeal metastases in NSCLC. Cell Rep 2024; 43:114613. [PMID: 39116206 DOI: 10.1016/j.celrep.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Leptomeningeal metastases (LMs) remain a devastating complication of non-small cell lung cancer (NSCLC), particularly following osimertinib resistance. We conducted single-cell RNA sequencing on cerebrospinal fluid (CSF) from EGFR-mutant NSCLC with central nervous system metastases. We found that macrophages of LMs displayed functional and phenotypic heterogeneity and enhanced immunosuppressive properties. A population of lipid-associated macrophages, namely RNASE1_M, were linked to osimertinib resistance and LM development, which was regulated by Midkine (MDK) from malignant epithelial cells. MDK exhibited significant elevation in both CSF and plasma among patients with LMs, with higher MDK levels correlating to poorer outcomes in an independent cohort. Moreover, MDK could promote macrophage M2 polarization with lipid metabolism and phagocytic function. Furthermore, malignant epithelial cells in CSF, particularly after resistance to osimertinib, potentially achieved immune evasion through CD47-SIRPA interactions with RNASE1_M. In conclusion, we revealed a specific subtype of macrophages linked to osimertinib resistance and LM development, providing a potential target to overcome LMs.
Collapse
Affiliation(s)
- Yang-Si Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Oncology, Heyuan Hospital of Guangdong Provincial People's Hospital, Heyuan People's Hospital, Heyuan 517000, China
| | - Wen-Pu Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kai Yin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wei-Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Shou-Heng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lu Zeng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fa-Man Xiao
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yue-Li Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiao-Yan Bai
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - E-E Ke
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jia-Xin Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Si-Yang Maggie Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Ruan H, Wang Z, Tang X, Zhan Q, Chen K, Gao L, Guan M. The characteristics of cerebrospinal fluid tumor microenvironment in a patient with leptomeningeal metastases from cancer of unknown primary. Genes Dis 2024; 11:100992. [PMID: 38274387 PMCID: PMC10808954 DOI: 10.1016/j.gendis.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Haoyu Ruan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhe Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Xuemei Tang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiong Zhan
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Gao
- Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Du Q, An Q, Zhang J, Liu C, Hu Q. Unravelling immune microenvironment features underlying tumor progression in the single-cell era. Cancer Cell Int 2024; 24:143. [PMID: 38649887 PMCID: PMC11036673 DOI: 10.1186/s12935-024-03335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The relationship between the immune cell and tumor occurrence and progression remains unclear. Profiling alterations in the tumor immune microenvironment (TIME) at high resolution is crucial to identify factors influencing cancer progression and enhance the effectiveness of immunotherapy. However, traditional sequencing methods, including bulk RNA sequencing, exhibit varying degrees of masking the cellular heterogeneity and immunophenotypic changes observed in early and late-stage tumors. Single-cell RNA sequencing (scRNA-seq) has provided significant and precise TIME landscapes. Consequently, this review has highlighted TIME cellular and molecular changes in tumorigenesis and progression elucidated through recent scRNA-seq studies. Specifically, we have summarized the cellular heterogeneity of TIME at different stages, including early, late, and metastatic stages. Moreover, we have outlined the related variations that may promote tumor occurrence and metastasis in the single-cell era. The widespread applications of scRNA-seq in TIME will comprehensively redefine the understanding of tumor biology and furnish more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Qilian Du
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiajun Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Goldberg M, Mondragon-Soto MG, Altawalbeh G, Meyer B, Aftahy AK. New Breakthroughs in the Diagnosis of Leptomeningeal Carcinomatosis: A Review of Liquid Biopsies of Cerebrospinal Fluid. Cureus 2024; 16:e55187. [PMID: 38558729 PMCID: PMC10980855 DOI: 10.7759/cureus.55187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Leptomeningeal carcinomatosis represents a terminal stage and is a devastating complication of cancer. Despite its high incidence, current diagnostic methods fail to accurately detect this condition in a timely manner. This failure to diagnose leads to the refusal of treatment and the absence of clinical trials, hampering the development of new therapy strategies. The use of liquid biopsy is revolutionizing the field of diagnostic oncology. The dynamic and non-invasive detection of tumor markers has enormous potential in cancer diagnostics and treatment. Leptomeningeal carcinomatosis is a condition where invasive tissue biopsy is not part of the routine diagnostic analysis, making liquid biopsy an essential diagnostic tool. Several elements in cerebrospinal fluid (CSF) have been investigated as potential targets of liquid biopsy, including free circulating tumor cells, free circulating nucleic acids, proteins, exosomes, and even non-tumor cells as part of the dynamic tumor microenvironment. This review aims to summarize current breakthroughs in the research on liquid biopsy, including the latest breakthroughs in the identification of tumor cells and nucleic acids, and give an overview of future directions in the diagnosis of leptomeningeal carcinomatosis.
Collapse
Affiliation(s)
- Maria Goldberg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | | | - Ghaith Altawalbeh
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | - Amir Kaywan Aftahy
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| |
Collapse
|
7
|
Li X, Chen K, Li J, Tang X, Ruan H, Guan M. Diagnostic value of cerebrospinal fluid human epididymis protein 4 for leptomeningeal metastasis in lung adenocarcinoma. Front Immunol 2024; 15:1339914. [PMID: 38304432 PMCID: PMC10830695 DOI: 10.3389/fimmu.2024.1339914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Background The diagnosis of lung adenocarcinoma (LUAD) leptomeningeal metastasis (LM) remains a clinical challenge. Human epididymis protein 4 (HE4) functions as a novel tumor biomarker for cancers. This study aimed to assess the diagnostic value of cerebrospinal fluid (CSF) HE4, and combined with CEACAM6, for LUAD LM. Methods The CSF HE4 protein level was measured in two independent cohorts by electrochemiluminescence. Test cohort included 58 LUAD LM patients, 22 LUAD patients without LM (Wiot-LM), and 68 normal controls. Validation cohort enrolled 50 LUAD LM patients and 40 normal controls, in parallel with Wiot-LM patients without brain metastases (19 Wiot-LM/BrM patients) or with BrM (26 BrM patients). The CSF level of CEA, CA125, CA153, CA199, CA724, NSE and ProGRP of these samples was measured by electrochemiluminescence, whereas the CSF CEACAM6 level was detected by enzyme-linked immunosorbent assay (ELISA). In addition, the serum level of these biomarkers was detected by same method as CSF. Results The level of HE4 or CEACAM6 in CSF samples from LUAD LM patients was significantly higher than those from normal controls and Wiot-LM patients. The HE4 or CEACAM6 level in CSF was higher than that in serum of LM patient. The CSF HE4 or CEACAM6 level for distinguished LM from Wiot-LM showed good performance by receiver-operating characteristic analysis. The better discriminative power for LM was achieved when HE4 was combined with CEACAM6. In addition, the CSF HE4 and CEACAM6 level showed little or no difference between Wiot-LM/BrM and BrM patients, the BrM would not significantly influence the HE4 or CEACAM6 level in CSF. The diagnostic power of CSF CA125, CA153, CA199, CA724, NSE and ProGRP for LUAD LM were not ideal. Conclusion The combination with HE4 and CEACAM6 has the promising application for the diagnosis of LUAD LM.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuemei Tang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoyu Ruan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Xia H, Zhu J, Zheng Z, Xiao P, Yu X, Wu M, Xue L, Xu X, Wang X, Guo Y, Zheng C, Ding S, Wang Y, Peng X, Fu S, Li J, Deng X. Amino acids and their roles in tumor immunotherapy of breast cancer. J Gene Med 2024; 26:e3647. [PMID: 38084655 DOI: 10.1002/jgm.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.
Collapse
Affiliation(s)
- Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Zhuomeng Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Peiyao Xiao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaohui Yu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoning Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
9
|
Wang Z, Ou Q, Gao L. The increased cfRNA of TNFSF4 in peripheral blood at late gestation and preterm labor: its implication as a noninvasive biomarker for premature delivery. Front Immunol 2023; 14:1154025. [PMID: 37275889 PMCID: PMC10232964 DOI: 10.3389/fimmu.2023.1154025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Given the important roles of immune tolerance and inflammation in both preterm and term labor, some inflammation-related genes could be related to the initiation of labor, even preterm labor. Inspection of cell-free RNA (cfRNA) engaged in inflammation in maternal blood may represent the varied gestational age and may have significant implications for the development of noninvasive diagnostics for preterm birth. Methods To identify potential biomarkers of preterm birth, we investigated the cfRNA and exosomal miRNA in the peripheral blood of pregnant women at different gestational ages that undergo term labor or preterm labor. 17 inflammatory initiation-related cfRNAs were screened by overlapping with the targets of decreasing miRNAs during gestation and highly expressed cfRNAs at late gestation in maternal blood. To reveal the origins and mechanisms of these screened cfRNAs, the datasets of single-cell RNA sequencing from peripheral blood mononuclear cells of pregnant women, the fetal lung, and the placenta across different gestational ages were analyzed. Results During late gestation, TNFSF4 expression increased exclusively in pro-inflammatory macrophages of maternal blood, whereas its receptor, TNFRSF4, increased expression in T cells from the decidua, which suggested the potential cell-cell communication of maternally-originated pro-inflammatory macrophages with the decidual T cells and contributed to the initiation of labor. Additionally, the cfRNA of TNFSF4 was also increased in preterm labor compared to term labor in the validation cohorts. The EIF2AK2 and TLR4 transcripts were increased in pro-inflammatory macrophages from both fetal lung and placenta but not in those from maternal mononuclear cells at late gestation, suggesting these cfRNAs are possibly derived from fetal tissues exclusively. Moreover, EIF2AK2 and TLR4 transcripts were found highly expressed in the pro-inflammatory macrophages from decidua as well, which suggested these specific fetal-origin macrophages may function at the maternal-fetal interface to stimulate uterine contractions, which have been implicated as the trigger of parturition and preterm labor. Discussion Taken together, our findings not only revealed the potential of peripheral TNFSF4 as a novel cfRNA biomarker for noninvasive testing of preterm labor but further illustrated how maternal and fetal signals coordinately modulate the inflammatory process at the maternal-fetal interface, causing the initiation of term or preterm labor.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Gao
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Khaled ML, Tarhini AA, Forsyth PA, Smalley I, Piña Y. Leptomeningeal Disease (LMD) in Patients with Melanoma Metastases. Cancers (Basel) 2023; 15:cancers15061884. [PMID: 36980770 PMCID: PMC10047692 DOI: 10.3390/cancers15061884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Leptomeningeal disease (LMD) is a devastating complication caused by seeding malignant cells to the cerebrospinal fluid (CSF) and the leptomeningeal membrane. LMD is diagnosed in 5-15% of patients with systemic malignancy. Management of LMD is challenging due to the biological and metabolic tumor microenvironment of LMD being largely unknown. Patients with LMD can present with a wide variety of signs and/or symptoms that could be multifocal and include headache, nausea, vomiting, diplopia, and weakness, among others. The median survival time for patients with LMD is measured in weeks and up to 3-6 months with aggressive management, and death usually occurs due to progressive neurologic dysfunction. In melanoma, LMD is associated with a suppressive immune microenvironment characterized by a high number of apoptotic and exhausted CD4+ T-cells, myeloid-derived suppressor cells, and a low number of CD8+ T-cells. Proteomics analysis revealed enrichment of complement cascade, which may disrupt the blood-CSF barrier. Clinical management of melanoma LMD consists primarily of radiation therapy, BRAF/MEK inhibitors as targeted therapy, and immunotherapy with anti-PD-1, anti-CTLA-4, and anti-LAG-3 immune checkpoint inhibitors. This review summarizes the biology and anatomic features of melanoma LMD, as well as the current therapeutic approaches.
Collapse
Affiliation(s)
- Mariam Lotfy Khaled
- Metabolism and Physiology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | - Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Peter A Forsyth
- Neuro-Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Inna Smalley
- Metabolism and Physiology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yolanda Piña
- Neuro-Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci 2023; 24:ijms24032943. [PMID: 36769267 PMCID: PMC9918030 DOI: 10.3390/ijms24032943] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yang
- Correspondence: (B.Y.); (Y.-B.L.)
| | - Yu-Bo Li
- Correspondence: (B.Y.); (Y.-B.L.)
| |
Collapse
|
12
|
Sreenivasan VKA, Henck J, Spielmann M. Single-cell sequencing: promises and challenges for human genetics. MED GENET-BERLIN 2022; 34:261-273. [PMID: 38836091 PMCID: PMC11006387 DOI: 10.1515/medgen-2022-2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Over the last decade, single-cell sequencing has transformed many fields. It has enabled the unbiased molecular phenotyping of even whole organisms with unprecedented cellular resolution. In the field of human genetics, where the phenotypic consequences of genetic and epigenetic alterations are of central concern, this transformative technology promises to functionally annotate every region in the human genome and all possible variants within them at a massive scale. In this review aimed at the clinicians in human genetics, we describe the current status of the field of single-cell sequencing and its role for human genetics, including how the technology works as well as how it is being applied to characterize and monitor diseases, to develop human cell atlases, and to annotate the genome.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
| | - Jana Henck
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
- DZHK e. V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| |
Collapse
|