1
|
Millington-Ward S, Palfi A, Shortall C, Finnegan LK, Bargroff E, Post IJM, Maguire J, Irnaten M, O′Brien C, Kenna PF, Chadderton N, Farrar GJ. AAV-NDI1 Therapy Provides Significant Benefit to Murine and Cellular Models of Glaucoma. Int J Mol Sci 2024; 25:8876. [PMID: 39201561 PMCID: PMC11354491 DOI: 10.3390/ijms25168876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Glaucoma, a leading cause of blindness, is a multifactorial condition that leads to progressive loss of retinal ganglion cells (RGCs) and vision. Therapeutic interventions based on reducing ocular hypertension are not always successful. Emerging features of glaucoma include mitochondrial dysfunction and oxidative stress. In the current study, NDI1-based gene therapy, which improves mitochondrial function and reduces reactive oxygen species, was delivered intraocularly via an adeno-associated viral vector (AAV). This AAV-NDI1 therapy protected RGCs from cell death in treated (1552.4 ± 994.0 RGCs/mm2) versus control eyes (1184.4 ± 978.4 RGCs/mm2, p < 0.05) in aged DBA/2J mice, a murine model of glaucoma. The photonegative responses (PhNRs) of RGCs were also improved in treated (6.4 ± 3.3 µV) versus control eyes (5.0 ± 3.1 µV, p < 0.05) in these mice. AAV-NDI1 also provided benefits in glaucomatous human lamina cribrosa (LC) cells by significantly increasing basal and maximal oxygen consumption rates and ATP production in these cells. Similarly, NDI1 therapy significantly protected H2O2-insulted primary porcine LC cells from oxidative stress. This study highlights the potential utility of NDI1 therapies and the benefits of improving mitochondrial function in the treatment of glaucoma.
Collapse
Affiliation(s)
- Sophia Millington-Ward
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Arpad Palfi
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Ciara Shortall
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Laura K. Finnegan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Ethan Bargroff
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Iris J. M. Post
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - John Maguire
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, D02XK51 Dublin, Ireland;
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin 7, D07K201 Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O′Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin 7, D07K201 Dublin, Ireland; (M.I.); (C.O.)
| | - Paul F. Kenna
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, D02XK51 Dublin, Ireland;
| | - Naomi Chadderton
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - G. Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| |
Collapse
|
2
|
Chen M, Wang Y, Dalal R, Du J, Vollrath D. Alternative oxidase blunts pseudohypoxia and photoreceptor degeneration due to RPE mitochondrial dysfunction. Proc Natl Acad Sci U S A 2024; 121:e2402384121. [PMID: 38865272 PMCID: PMC11194566 DOI: 10.1073/pnas.2402384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA94305
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV26506
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA94305
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV26506
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA94305
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA94305
| |
Collapse
|
3
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|