1
|
Liu YL, Guo YH, Song XQ, Hu MX, Zhao ST. A method for analyzing programmed cell death in xylem development by flow cytometry. FRONTIERS IN PLANT SCIENCE 2023; 14:1196618. [PMID: 37360718 PMCID: PMC10288846 DOI: 10.3389/fpls.2023.1196618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated developmental process leading to the death of specific types of plant cells, which plays important roles in plant development and growth such as wood formation. However, an efficient method needs to be established to study PCD in woody plants. Flow cytometry is widely utilized to evaluate apoptosis in mammalian cells, while it is rarely used to detect PCD in plants, especially in woody plants. Here, we reported that the xylem cell protoplasts from poplar stem were stained with a combination of fluorescein annexin V-FITC and propidium iodide (PI) and then sorted by flow cytometry. As expected, living cells (annexin V-FITC negative/PI negative), early PCD cells (annexin V-FITC positive/PI negative), and late PCD cells (annexin V-FITC positive/PI positive) could be finely distinguished through this method and then subjected for quantitative analysis. The expression of cell-type- and developmental stages-specific marker genes was consistent with the cell morphological observation. Therefore, the newly developed fluorescence-activated cell sorting (FACS) method can be used to study PCD in woody plants, which will be beneficial for studying the molecular mechanisms of wood formation.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ying-Hua Guo
- National Center for Protein Sciences at Peking University, Beijing, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Xuan Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Novelli S, Gismondi A, Di Marco G, Canuti L, Nanni V, Canini A. Plant defense factors involved in Olea europaea resistance against Xylella fastidiosa infection. JOURNAL OF PLANT RESEARCH 2019; 132:439-455. [PMID: 30993555 DOI: 10.1007/s10265-019-01108-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Olive quick decline syndrome (OQDS) is a dangerous plant disease, caused by the bacterium Xylella fastidiosa, which targets olive (Olea europaea). Since field observations suggested that some olive cultivars (i.e. Leccino) were more resistant to OQDS than others (i.e. Cellina di Nardò), the plant defense strategies adopted by olive to contrast X. fastidiosa infection were investigated. In the present study, ELISA and genetic approaches were used to confirm plant infection, while microbial colonization mechanism and distribution in host plant tissues and reactive oxygen species (ROS) levels were examined by light, scanning electron and confocal microscopy analyses. Spectrophotometric and chromatographic techniques were performed to measure secondary metabolites content and qPCR assay was carried out for monitoring plant gene expression variation. Our analysis showed that X. fastidiosa caused accumulation of ROS in Leccino samples compared to Cellina di Nardò. Moreover, the infection induced the up-regulation of defense-related genes, such as NADPH oxidase, some protein kinases, pathogen plant response factors and metabolic enzymes. We also found that Leccino plants enhanced the production of specific antioxidant and antimicrobial molecules, to fight the pathogen and avoid its spreading into xylem vessels. We provided new information on OQDS resistance mechanism applied by Leccino cultivar. In particular, we evidenced that high concentrations of ROS, switching on plant defence signalling pathways, may represent a key factor in fighting X. fastidiosa infection.
Collapse
Affiliation(s)
- Silvia Novelli
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Gabriele Di Marco
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Lorena Canuti
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Valentina Nanni
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Antonella Canini
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, Rome, 00133, Italy.
| |
Collapse
|
3
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Yang W, Cai J, Zhou Z, Zhou G, Mei F, Wang L. Microautophagy involves programmed cell semi-death of sieve elements in developing caryopsis of Triticum aestivum L. Cell Biol Int 2015; 39:1364-75. [PMID: 26146941 DOI: 10.1002/cbin.10512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 07/02/2015] [Indexed: 11/10/2022]
Abstract
Differentiation of sieve elements (SEs) involves programmed cell semi-death, in which a small amount of organelles is retained. However, the mechanisms by which a large amount of SE cytoplasm is degraded and the specific proteases involved are not clear. In this study, we confirmed that the degradation of cytoplasm outside of the vacuole was mediated by microautophagy of the vacuole, and that the tonoplast selectively fused with the plasma membrane after most of the cytoplasm in the vacuoles was degraded. The integration of space enclosed a small amount of cytoplasm. Therefore, that fraction of the cytoplasm was preserved. At the same time, the cytosol was weakly acidic during membrane fusion because part of the tonoplast was ruptured. We also demonstrated that wheat aspartic protease (WAP1) and proteases including cathepsin B activity (PICA) were involved in programmed cell semi-death of SEs. PICA showed strongest activity before mass of the cytoplasm was degraded, which might contribute toward SE stability. We found that WAP1 mainly degraded the cytoplasm. Therefore, programmed cell semi-death of SEs might result from the joint action of vacuoles and multiple proteases.
Collapse
Affiliation(s)
- Wenli Yang
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jingtong Cai
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhuqing Zhou
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guangsheng Zhou
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangzhu Mei
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Likai Wang
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
5
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kwon SI, Cho HJ, Lee JS, Jin H, Shin SJ, Kwon M, Noh EW, Park OK. Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars. PLANT, CELL & ENVIRONMENT 2011; 34:2212-24. [PMID: 21895694 DOI: 10.1111/j.1365-3040.2011.02416.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An Arabidopsis small GTPase, RabG3b, was previously characterized as a component of autophagy and as a positive regulator for xylem development in Arabidopsis. In this work, we assessed whether RabG3b modulates xylem-associated traits in poplar in a similar way as in Arabidopsis. We generated transgenic poplars (Populus alba × Populus tremula var. glandulosa) overexpressing a constitutively active form of RabG3b (RabG3bCA) and performed a range of morphological, histochemical and molecular analyses to examine xylogenesis. RabG3bCA transgenic poplars showed increased stem growth due to enhanced xylem development. Autophagic structures were observed in differentiating xyelm cells undergoing programmed cell death (PCD) in wild-type poplar, and were more abundant in RabG3bCA transgenic poplar plants and cultured cells. Xylogenic activation was also accompanied by the expression of secondary wall-, PCD- and autophagy-related genes. Collectively, our results suggest that Arabidopsis RabG3b functions to regulate xylem growth through the activation of autophagy during wood formation in Populus, as does the same in Arabidopsis.
Collapse
Affiliation(s)
- Soon Il Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cannesan MA, Gangneux C, Lanoue A, Giron D, Laval K, Hawes M, Driouich A, Vicré-Gibouin M. Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. ANNALS OF BOTANY 2011; 108:459-69. [PMID: 21807690 PMCID: PMC3158693 DOI: 10.1093/aob/mcr177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/17/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete-plant interaction at the tissue and cellular levels. METHODS Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection. KEY RESULTS Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin. CONCLUSIONS Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant-microbe interactions.
Collapse
Affiliation(s)
- Marc Antoine Cannesan
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan, France
| | - Christophe Gangneux
- Laboratoire BioSol, Esitpa, 3, rue du Tronquet, BP40118, 76134 Mont-Saint-Aignan Cedex, France
| | - Arnaud Lanoue
- Université François Rabelais de Tours. EA 2106 Plant Biotechnology and Biomolecules, 31 Avenue Monge, 37200 Tours, France
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Université François Rabelais, 37200 Tours, France
| | - Karine Laval
- Laboratoire BioSol, Esitpa, 3, rue du Tronquet, BP40118, 76134 Mont-Saint-Aignan Cedex, France
| | - Martha Hawes
- Department of Soil, Water, and Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan, France
| |
Collapse
|
8
|
Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:151-64. [PMID: 20659276 DOI: 10.1111/j.1365-313x.2010.04315.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tracheary elements (TEs) of the xylem serve as the water-conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1-301, and an autophagy mutant atg5-1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.
Collapse
Affiliation(s)
- Soon Il Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea RIKEN Plant Science Center, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Lacayo CI, Malkin AJ, Holman HYN, Chen L, Ding SY, Hwang MS, Thelen MP. Imaging cell wall architecture in single Zinnia elegans tracheary elements. PLANT PHYSIOLOGY 2010; 154:121-33. [PMID: 20592039 PMCID: PMC2938135 DOI: 10.1104/pp.110.155242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 06/23/2010] [Indexed: 05/18/2023]
Abstract
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.
Collapse
|
10
|
Twumasi P, Iakimova ET, Qian T, van Ieperen W, Schel JHN, Emons AMC, van Kooten O, Woltering EJ. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures. BMC PLANT BIOLOGY 2010; 10:162. [PMID: 20691058 PMCID: PMC3017784 DOI: 10.1186/1471-2229-10-162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 08/06/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. RESULTS Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. CONCLUSIONS To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.
Collapse
Affiliation(s)
- Peter Twumasi
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Elena T Iakimova
- Wageningen University, Food and Biobased Research, PO Box 17, 6700 AA Wageningen, The Netherlands
- Institute of Ornamental Plants, 1222 Negovan, Sofia, Bulgaria
| | - Tian Qian
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Wim van Ieperen
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Jan HN Schel
- Wageningen University, Laboratory of Plant Cell Biology, P.O. Box 633, 6700 AP Wageningen, The Netherlands
| | - Anne Mie C Emons
- Wageningen University, Laboratory of Plant Cell Biology, P.O. Box 633, 6700 AP Wageningen, The Netherlands
| | - Olaf van Kooten
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Ernst J Woltering
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
- Wageningen University, Food and Biobased Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
11
|
Barceló AR, Laura VGR. Reactive Oxygen Species in Plant Cell Walls. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA. Class III peroxidases in plant defence reactions. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:377-90. [PMID: 19073963 DOI: 10.1093/jxb/ern277] [Citation(s) in RCA: 423] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
When plants are attacked by pathogens, they defend themselves with an arsenal of defence mechanisms, both passive and active. The active defence responses, which require de novo protein synthesis, are regulated through a complex and interconnected network of signalling pathways that mainly involve three molecules, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), and which results in the synthesis of pathogenesis-related (PR) proteins. Microbe or elicitor-induced signal transduction pathways lead to (i) the reinforcement of cell walls and lignification, (ii) the production of antimicrobial metabolites (phytoalexins), and (iii) the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Among the proteins induced during the host plant defence, class III plant peroxidases (EC 1.11.1.7; hydrogen donor: H(2)O(2) oxidoreductase, Prxs) are well known. They belong to a large multigene family, and participate in a broad range of physiological processes, such as lignin and suberin formation, cross-linking of cell wall components, and synthesis of phytoalexins, or participate in the metabolism of ROS and RNS, both switching on the hypersensitive response (HR), a form of programmed host cell death at the infection site associated with limited pathogen development. The present review focuses on these plant defence reactions in which Prxs are directly or indirectly involved, and ends with the signalling pathways, which regulate Prx gene expression during plant defence. How they are integrated within the complex network of defence responses of any host plant cell will be the cornerstone of future research.
Collapse
Affiliation(s)
- L Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Kaposi AS, Veress G, Vásárhelyi B, Macardle P, Bailey S, Tulassay T, Treszl A. Cytometry-acquired calcium-flux data analysis in activated lymphocytes. Cytometry A 2008; 73:246-53. [DOI: 10.1002/cyto.a.20518] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
Tracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are joined together to form a continuous network. Expression studies on model systems as diverse as trees and cell cultures have contributed to providing a flood of candidate genes with potential roles in TE differentiation. Analysis of some of these genes has yielded important information on processes such as patterned secondary cell wall deposition. The current challenge is to continue this functional analysis and to use these data and build an integrated model of TE development.
Collapse
Affiliation(s)
- Simon Turner
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom.
| | | | | |
Collapse
|