1
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
2
|
Popov AL, Han B, Ermakov AM, Savintseva IV, Ermakova ON, Popova NR, Shcherbakov AB, Shekunova TO, Ivanova OS, Kozlov DA, Baranchikov AE, Ivanov VK. PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110494. [PMID: 31924007 DOI: 10.1016/j.msec.2019.110494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Photochromic tungsten oxide (WO3) nanoparticles stabilized by polyvinylpyrrolidone (PVP) were synthesized to evaluate their potential for biomedical applications. PVP-stabilized tungsten oxide nanoparticles demonstrated a highly selective cytotoxic effect on normal and cancer cells in vitro. WO3 nanoparticles were found to induce substantial cell death in osteosarcoma cells (MNNG/HOS cell line) with a half-maximal inhibitory concentration (IC50) of 5 mg/mL, while producing no, or only minor, toxicity in healthy human mesenchymal stem cells (hMSc). WO3 nanoparticles induced intracellular oxidative stress, which led to apoptosis type cell death. The selective anti-cancer effects of WO3 nanoparticles are due to the pH sensitivity of tungsten oxide and its capability of reactive oxygen species (ROS) generation, which is expressed in the modulation of genes involved in reactive oxygen species metabolism, mitochondrial dysfunction, and apoptosis.
Collapse
Affiliation(s)
- Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Bingyuan Han
- Jiangsu University of Technology, Zhenjiang 212013, China
| | - Artem M Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina V Savintseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga N Ermakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Nelly R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Alexander B Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368, Ukraine
| | - Taisiya O Shekunova
- Lomonosov Moscow State University, Moscow 119991, Russia; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga S Ivanova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A Kozlov
- Lomonosov Moscow State University, Moscow 119991, Russia; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander E Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia; National Research Tomsk State University, Tomsk 634050, Russia.
| |
Collapse
|
3
|
Shah K, Bentley E, Tyler A, Richards KSR, Wright E, Easterbrook L, Lee D, Cleaver C, Usher L, Burton JE, Pitman JK, Bruce CB, Edge D, Lee M, Nazareth N, Norwood DA, Moschos SA. Field-deployable, quantitative, rapid identification of active Ebola virus infection in unprocessed blood. Chem Sci 2017; 8:7780-7797. [PMID: 29163915 PMCID: PMC5694917 DOI: 10.1039/c7sc03281a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
The West African Ebola virus outbreak underlined the importance of delivering mass diagnostic capability outside the clinical or primary care setting in effectively containing public health emergencies caused by infectious disease. Yet, to date, there is no solution for reliably deploying at the point of need the gold standard diagnostic method, real time quantitative reverse transcription polymerase chain reaction (RT-qPCR), in a laboratory infrastructure-free manner. In this proof of principle work, we demonstrate direct performance of RT-qPCR on fresh blood using far-red fluorophores to resolve fluorogenic signal inhibition and controlled, rapid freeze/thawing to achieve viral genome extraction in a single reaction chamber assay. The resulting process is entirely free of manual or automated sample pre-processing, requires no microfluidics or magnetic/mechanical sample handling and thus utilizes low cost consumables. This enables a fast, laboratory infrastructure-free, minimal risk and simple standard operating procedure suited to frontline, field use. Developing this novel approach on recombinant bacteriophage and recombinant human immunodeficiency virus (HIV; Lentivirus), we demonstrate clinical utility in symptomatic EBOV patient screening using live, infectious Filoviruses and surrogate patient samples. Moreover, we evidence assay co-linearity independent of viral particle structure that may enable viral load quantification through pre-calibration, with no loss of specificity across an 8 log-linear maximum dynamic range. The resulting quantitative rapid identification (QuRapID) molecular diagnostic platform, openly accessible for assay development, meets the requirements of resource-limited countries and provides a fast response solution for mass public health screening against emerging biosecurity threats.
Collapse
Affiliation(s)
- Kavit Shah
- Westminster Genomic Services , Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
- BGResearch Ltd. , 6 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - Emma Bentley
- Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
| | - Adam Tyler
- BioGene Ltd. , 8 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - Kevin S R Richards
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - Edward Wright
- Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
| | - Linda Easterbrook
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - Diane Lee
- Fluorogenics LIMITED , Building 227, Tetricus Science Park, Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK
| | - Claire Cleaver
- Fluorogenics LIMITED , Building 227, Tetricus Science Park, Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK
| | - Louise Usher
- Westminster Genomic Services , Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
| | - Jane E Burton
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - James K Pitman
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - Christine B Bruce
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - David Edge
- BioGene Ltd. , 8 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - Martin Lee
- Fluorogenics LIMITED , Building 227, Tetricus Science Park, Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK
| | - Nelson Nazareth
- BioGene Ltd. , 8 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - David A Norwood
- Diagnostic Systems Division and Virology Division , United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD 21701-5011 , USA
| | - Sterghios A Moschos
- Westminster Genomic Services , Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
- Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
- Department of Applied Sciences , Faculty of Health and Life Sciences , Northumbria University , C4.03 Ellison Building, Ellison Place , Newcastle Upon Tyne , Tyne and Wear NE1 8ST , UK . ; Tel: +44(0) 191 215 6623
| |
Collapse
|
4
|
Chiaravalli J, Glickman JF. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen. SLAS DISCOVERY 2017; 22:1120-1130. [DOI: 10.1177/2472555217724745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have developed a new high-content cytotoxicity assay using live cells, called “ImageTOX.” We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.
Collapse
Affiliation(s)
- Jeanne Chiaravalli
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - J. Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Darzynkiewicz Z, Zhao H, Dorota Halicka H, Pozarowski P, Lee B. Fluorochrome-Labeled Inhibitors of Caspases: Expedient In Vitro and In Vivo Markers of Apoptotic Cells for Rapid Cytometric Analysis. Methods Mol Biol 2017; 1644:61-73. [PMID: 28710753 DOI: 10.1007/978-1-4939-7187-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Activation of caspases is a characteristic event of apoptosis. Various cytometric methods distinguishing this event have been developed to serve as specific apoptotic markers for the assessment of apoptotic frequency within different cell populations. The method described in this chapter utilizes fluorochrome labeled inhibitors of caspases (FLICA) and is applicable to fluorescence microscopy, flow- and imaging-cytometry as well as to confocal imaging. Cell-permeant FLICA reagents tagged with carboxyfluorescein or sulforhodamine, when applied to live cells in vitro or in vivo, exclusively label the cells that are undergoing apoptosis. The FLICA labeling methodology is rapid, simple, robust, and can be combined with other markers of cell death for multiplexed analysis. Examples are presented on FLICA use in combination with a vital stain (propidium iodide), detection of the loss of mitochondrial electrochemical potential, and exposure of phosphatidylserine on the outer surface of plasma cell membrane using Annexin V fluorochrome conjugates. FLICA staining followed by cell fixation and stoichiometric staining of cellular DNA demonstrate that FLICA binding can be correlated with the concurrent analysis of DNA ploidy, cell cycle phase, DNA fragmentation, and other apoptotic events whose detection requires cell permeabilization. The "time window" for the detection of apoptosis with FLICA is wider compared to the Annexin V binding, making FLICA a preferable marker for the detection of early phase apoptosis and therefore more accurate for quantification of apoptotic cells. Unlike many other biomarkers of apoptotic cells, FLICAs can be used to detect apoptosis ex vivo and in vivo in different tissues.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, N.Y, 10595, USA.
| | - Hong Zhao
- Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, N.Y, 10595, USA
| | - H Dorota Halicka
- Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, N.Y, 10595, USA
| | | | - Brian Lee
- Immunochemistry Technologies, Bloomington, MN, 55431, USA
| |
Collapse
|
6
|
Tolosa L, Carmona A, Castell JV, Gómez-Lechón MJ, Donato MT. High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol 2014; 89:1847-60. [DOI: 10.1007/s00204-014-1334-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023]
|
7
|
Atale N, Gupta S, Yadav UCS, Rani V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microsc 2014; 255:7-19. [PMID: 24831993 DOI: 10.1111/jmi.12133] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst-33342, 4', 6-diamidino-2-phenylindole (DAPI), Acridine orange-Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin-V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells.
Collapse
Affiliation(s)
- N Atale
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | | | | | | |
Collapse
|
8
|
Wlodkowic D, Akagi J, Dobrucki J, Errington R, Smith PJ, Takeda K, Darzynkiewicz Z. Kinetic viability assays using DRAQ7 probe. ACTA ACUST UNITED AC 2014; Chapter 9:9.41.1-9.41.8. [PMID: 23835805 DOI: 10.1002/0471142956.cy0941s65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cell death within cell populations is a stochastic process where cell-to-cell variation in temporal progression through the various stages of cell death arises from asynchrony of subtle fluctuations in the signaling pathways. Most cell death assays rely on detection of the specific marker of cell demise at the end-point of cell culturing. Such an approach cannot account for the asynchrony and the stochastic nature of cell response to the death-inducing signal. There is a need therefore for rapid and high-throughput bioassays capable of continuously tracking viability of individual cells from the time of encountering a stress signal up to final stages of their demise. In this context, a new anthracycline derivative, DRAQ7, is gaining increasing interest as an easy-to-use marker capable of long-term monitoring of cell death in real-time. This novel probe neither penetrates the plasma membrane of living cells nor does it affect the cells' susceptibility to the death-inducing agents. However, when the membrane integrity is compromised, DRAQ7 enters cells undergoing demise and binds readily to nuclear DNA to report cell death. Here, we provide three sets of protocols for viability assays using DRAQ7 probe. The first protocol describes the innovative use of single-color DRAQ7 real-time assay to dynamically track cell viability. The second protocol outlines a simplified end-point DRAQ7 staining approach. The final protocol highlights the real-time and multiparametric apoptosis assay utilizing DRAQ7 dye concurrently with tetramethylrhodamine methyl ester (TMRM), the mitochondrial trans-membrane electrochemical potential (ΔΨm) sensing probe.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
9
|
Shinawi TF, Kimmel DW, Cliffel DE. Multianalyte microphysiometry reveals changes in cellular bioenergetics upon exposure to fluorescent dyes. Anal Chem 2013; 85:11677-80. [PMID: 24228839 PMCID: PMC3900241 DOI: 10.1021/ac402764x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescent dyes have been designed for internal cellular component specificity and have been used extensively in the scientific community as a means to monitor cell growth, location, morphology, and viability. However, it is possible that the introduction of these dyes influences the basal function of the cell and, in turn, the results of these studies. Electrochemistry provides a noninvasive method for probing the unintended cellular affects of these dyes. The multianalyte microphysiometer (MAMP) is capable of simultaneous electrochemical measurement of extracellular metabolites in real-time. In this study, analytes central to cellular metabolism, glucose, lactate, oxygen, as well as extracellular acidification were monitored to determine the immediate metabolic effects of nuclear stains, including SYTO, DAPI dilactate, Hoechst 33342, and FITC dyes upon the pheochromocytoma PC-12 cells and RAW 264.7 macrophages. The experimental results revealed that the SYTO dye 13 significantly decreased glucose and oxygen consumption and increased extracellular acidification and lactate production in both cell lines, indicating a shift to anaerobic respiration. No other dyes caused significantly definitive changes in cellular metabolism upon exposure. This study shows that fluorescent dyes can have unintended effects on cellular metabolism and care should be taken when using these probes to investigate cellular function and morphology.
Collapse
Affiliation(s)
- Tesniem F. Shinawi
- Department of Chemistry, Vanderbilt University, VU Station B. Nashville, TN 37235-1822, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1809, USA
| | - Danielle W. Kimmel
- Department of Chemistry, Vanderbilt University, VU Station B. Nashville, TN 37235-1822, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1809, USA
| | - David E. Cliffel
- Department of Chemistry, Vanderbilt University, VU Station B. Nashville, TN 37235-1822, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1809, USA
| |
Collapse
|
10
|
Wlodkowic D, Skommer J, Akagi J, Fujimura Y, Takeda K. Multiparameter analysis of apoptosis using lab-on-a-chip flow cytometry. CURRENT PROTOCOLS IN CYTOMETRY 2013; 66:9.42.1-9.42.15. [PMID: 24510726 DOI: 10.1002/0471142956.cy0942s66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The age of microfluidic flow cytometry (µFCM) is fast becoming a reality. One of the most exciting applications of miniaturized chip-based cytometers is multivariate analysis using sampling volumes as small as 10 µl while matching the multiparameter data collection of conventional flow cytometers. We outline several innovative protocols for analyzing caspase-dependent cell death and cell cycle (DNA-content) profile using a fully integrated microfluidic flow cytometry system, Fishman-R. The first protocol describes the use of a new plasma membrane-permeability marker, DRAQ7, and the fluorogenic caspase substrate PhiPhiLux to track caspase activation during programmed cell death. Also outlined is the use of DRAQ7 fluorochrome in conjunction with the mitochondrial membrane potential-sensitive probe TMRM to track dissipation of inner mitochondrial cross-membrane potential. Another protocol adds the ability to measure dissipation of mitochondrial inner membrane potential (using TMRM probe) in relation to the cell cycle profile (using DRAQ5 probe) in living leukemic cells. Finally, we describe the combined use of fluorogenic caspases substrate PhiPhiLux with DRAQ5 probe to measure caspase activation in relation to the cell cycle profile in living tumor cells.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- The BioMEMS Research Group, School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Joanna Skommer
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jin Akagi
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Yoo Fujimura
- R&D Division, On-chip Biotechnologies, Tokyo, Japan
| | - Kazuo Takeda
- R&D Division, On-chip Biotechnologies, Tokyo, Japan
| |
Collapse
|
11
|
Skommer J, Akagi J, Takeda K, Fujimura Y, Khoshmanesh K, Wlodkowic D. Multiparameter Lab-on-a-Chip flow cytometry of the cell cycle. Biosens Bioelectron 2012; 42:586-91. [PMID: 23261693 DOI: 10.1016/j.bios.2012.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 01/22/2023]
Abstract
Multiparameter analysis of apoptosis in relation to cell cycle position is helpful in exploring mechanism of action of anticancer drugs that target specific molecular cogs of the cell cycle. This work demonstrates a new rationale for using microfluidic Lab-on-a-Chip flow cytometry (μFCM) with a simple 2D hydrodynamic focusing for the multiparameter analysis of apoptosis and DNA ploidy analysis in human hematopoietic cancer cells. The microfluidic system employs disposable microfluidic cartridges fabricated using injection moulding in optically transparent poly(methylmethacrylate). The dedicated and miniaturized electronic hardware interface enables up to six parameter detections using a combination of spatially separated solid-state 473 nm (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide evidence that the simple 2D flow focusing on a chip-based device is sufficient to measure cellular DNA content in both fixed and living tumor cells. The feasibility of using the μFCM system for multiparameter analysis of caspase activation and dissipation of mitochondrial inner membrane potential (ΔΨ(m) loss) in relation to DNA content is also demonstrated. The data shows that straightforward microfluidic chip designs are sufficient to acquire high quality biological data when combined with sophisticated electronic interfaces. They can be a viable alternative to conventional FCM for multiparameter detection of programmed cell death.
Collapse
Affiliation(s)
- Joanna Skommer
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
12
|
Wlodkowic D. The case for multiparameter cytometry in neurobiology. Cytometry A 2012; 81:544-5. [DOI: 10.1002/cyto.a.22064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/03/2012] [Indexed: 12/18/2022]
|
13
|
Baarine M, Thandapilly SJ, Louis XL, Mazué F, Yu L, Delmas D, Netticadan T, Lizard G, Latruffe N. Pro-apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and normal cardiac cells. GENES AND NUTRITION 2011; 6:161-9. [PMID: 21541654 DOI: 10.1007/s12263-011-0232-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 04/21/2011] [Indexed: 12/20/2022]
Abstract
Resveratrol is a natural dietary polyphenol found in grape skin, red wine, and various other food products. Resveratrol has proved to be an effective chemopreventive agent for different malignant tumors. It has also been shown to prevent vascular alterations such as atherosclerosis and inflammatory-associated events. In view of these observations, we investigated the anti-proliferative and pro-apoptotic activities of resveratrol on a tumoral cardiac cell line (HL-1 NB) derived from mouse tumoral atrial cardiac myocytes. These effects were compared with those found on normal neonatal mouse cardiomyocytes. HL-1 NB cells and neonatal cardiomyocytes were treated with resveratrol (5, 30, and/or 100 μM) for different times of culture (24, 48, and/or 72 h). Resveratrol effects were determined by various microscopical and flow cytometric methods. After resveratrol treatment, a strong inhibition of tumoral cardiac HL1-NB cell growth associated with a loss of cell adhesion was observed. This cell proliferation arrest was associated with an apoptotic process revealed by an increased percentage of cells with fragmented and/or condensed nuclei (characteristic of apoptotic cells) identified after staining with Hoechst 33342 and by the presence of cells in subG1. At the opposite, on normal cardiomyocytes, no cytotoxic effects of resveratrol were observed, and a protective effect of resveratrol against norepinephrine-induced apoptosis was found on normal cardiomyocytes. Altogether, the present data demonstrate that resveratrol (1) induces apoptosis of tumoral cardiac HL1-NB cells, (2) does not induce cell death on normal cardiomyocytes, and (3) prevents norepinephrine-induced apoptosis on normal cardiomyocytes.
Collapse
Affiliation(s)
- Mauhamad Baarine
- Centre de Recherche Inserm UMR 866 (Lipides, Nutrition, Cancer), Université de Bourgogne, Equipe Biochimie Métabolique et Nutritionnelle-6, Bd Gabriel, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Novel model for multispecies biofilms that uses rigid gas-permeable lenses. Appl Environ Microbiol 2011; 77:3413-21. [PMID: 21421785 DOI: 10.1128/aem.00039-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.
Collapse
|
15
|
Grimberg BT. Methodology and application of flow cytometry for investigation of human malaria parasites. J Immunol Methods 2011; 367:1-16. [PMID: 21296083 DOI: 10.1016/j.jim.2011.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 12/29/2010] [Accepted: 01/27/2011] [Indexed: 02/03/2023]
Abstract
Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries.
Collapse
Affiliation(s)
- Brian T Grimberg
- Center for Global Health and Diseases, Case Western Reserve, University, Wolstein Research Building, 4-134 Cleveland, OH 44106-7286, United States.
| |
Collapse
|
16
|
Stemberger J, Witt V, Printz D, Geyeregger R, Fritsch G. Novel single-platform multiparameter FCM analysis of apoptosis: Significant differences between wash and no-wash procedure. Cytometry A 2011; 77:1075-81. [PMID: 20872888 DOI: 10.1002/cyto.a.20976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
FCM is a generally accepted tool to analyze apoptosis. Unfortunately, the cell preparation of all commercial kits available includes cell washing known to cause cell loss which is most likely to affect apoptotic cells in particular. To address this, we developed a seven-color single-platform no-wash analysis technique and compared the results with those from an analogous procedure including cell washing. A five-color mAb cocktail was employed to address target cells by surface labeling, Yo-PRO-1® and DAPI were used to discriminate apoptotic and necrotic from viable cells. Cells were quantified on the basis of internal-standard fluorescent beads. Jurkat cells ACC 282 treated with camptothecin were employed to establish the staining procedure, which was then applied to blood cells collected by extracorporeal apheresis and treated with UV irradiation. Data evaluation showed that although each method by itself was highly reproducible (R(2) = 0.973), the numbers of apoptotic cells detected with the no-wash procedure were significantly higher than those obtained after cell washing (P = 6.6 E(-5), Wilcoxon Test). In addition, the observed differences increased with higher cell numbers (Bland and Altmann). We conclude that the described test is a feasible and reliable tool for apoptosis measurement and it provides results that are definitely closer to the truth than those obtained from kits that require cell washing.
Collapse
Affiliation(s)
- Julia Stemberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | | | | |
Collapse
|
17
|
Darzynkiewicz Z, Pozarowski P, Lee BW, Johnson GL. Fluorochrome-labeled inhibitors of caspases: convenient in vitro and in vivo markers of apoptotic cells for cytometric analysis. Methods Mol Biol 2011; 682:103-14. [PMID: 21057924 DOI: 10.1007/978-1-60327-409-8_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of caspases is a hallmark of apoptosis. Several methods, therefore, were developed to identify and count the frequency of apoptotic cells based on the detection of caspases activation. The method described in this chapter is based on the use of fluorochrome-labeled inhibitors of caspases (FLICA) applicable to fluorescence microscopy, and flow- and image-cytometry. Cell-permeant FLICA reagents tagged with carboxyfluorescein or sulforhodamine when applied to live cells in vitro or in vivo, exclusively label cells that are undergoing apoptosis. The FLICA labeling methodology is simple, rapid, robust, and can be combined with other markers of cell death for multiplexed analysis. Examples are presented on FLICA use in combination with a vital stain (propidium iodide), detection of the loss of mitochondrial electrochemical potential, and exposure of phosphatidylserine on the outer surface of plasma cell membrane using Annexin V fluorochrome conjugates. Following cell fixation and stoichiometric staining of cellular DNA, FLICA binding can be correlated with DNA ploidy, cell cycle phase, DNA fragmentation, and other apoptotic events whose detection requires cell permeabilization. The "time window" for the detection of apoptosis with FLICA is wider compared to that with the Annexin V binding, making FLICA a preferable marker for the detection of early phase apoptosis and more accurate for quantification of apoptotic cells.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, NY, USA
| | | | | | | |
Collapse
|
18
|
Wlodkowic D, Skommer J, Darzynkiewicz Z. Rapid quantification of cell viability and apoptosis in B-cell lymphoma cultures using cyanine SYTO probes. Methods Mol Biol 2011; 740:81-9. [PMID: 21468970 DOI: 10.1007/978-1-61779-108-6_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The gross majority of classical apoptotic hallmarks can be rapidly examined by multiparameter flow cytometry. As a result, cytometry became a technology of choice in diverse studies of cellular demise. In this context, a novel class of substituted unsymmetrical cyanine SYTO probes has recently become commercially available. Derived from thiazole orange, SYTO display low intrinsic fluorescence, with strong enhancement upon binding to DNA and/or RNA. Broad selection of excitation/emission spectra has recently driven implementation of SYTO dyes in polychromatic protocols with the detection of apoptosis being one of the most prominent applications In this chapter, we outline a handful of commonly used protocols for the assessment of apoptotic events using selected SYTO probes (SYTO 16, 62, 80) in conjunction with common plasma membrane permeability markers (PI, YO-PRO 1, 7-AAD).
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
19
|
Ullal AJ, Pisetsky DS, Reich CF. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A 2010; 77:294-301. [PMID: 20104574 DOI: 10.1002/cyto.a.20833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microparticles (MPs) are small membrane-bound vesicles that are released from activated or dying cells by a blebbing process. These particles contain nuclear and cytoplasmic components and represent unique biomarkers for disease. The small size of particles, however, limits detection using flow cytometry with either light scatter or staining for surface markers. Because MPs contain DNA and RNA, we have explored the use of SYTO 13, a member of the class of SYTO dyes, for particle detection. SYTO 13 is cell permeable and has a high fluorescent yield when bound to DNA or RNA. In this study, we compared detection of MPs using either light scatter or SYTO 13 staining, testing the hypothesis that, with fluorescence detection with SYTO 13, problems of "noise" with light scatter are reduced and the range of MP sizes detected is increased. In these experiments, particles were obtained from lymphoid cell lines treated in vitro to undergo apoptosis. As these results showed, STYO 13 allowed the detection of 1.5-2.9 times as many particles as did light scatter. The increased sensitivity was observed with three different cell lines and was independent of inducing stimulus. Treatment of fixed and permeabilized MPs with DNase and RNase showed that SYTO 13 binding resulted from interaction with both DNA and RNA. Together, these findings indicate that the nucleic acid content of MPs provides the basis for their detection in in vitro systems and suggests the utility of fluorescent dyes like SYTO 13 for more sensitive quantitative assays.
Collapse
Affiliation(s)
- Anirudh J Ullal
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, North Carolina, USA.
| | | | | |
Collapse
|
20
|
Fu Y, Tilley L, Kenny S, Klonis N. Dual labeling with a far red probe permits analysis of growth and oxidative stress in P. falciparum-infected erythrocytes. Cytometry A 2010; 77:253-63. [PMID: 20091670 DOI: 10.1002/cyto.a.20856] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The malaria parasite, Plasmodium falciparum, develops within human erythrocytes, consuming host hemoglobin to support its own growth. Reactive oxygen species (superoxide and hydrogen peroxide) are by-products of hemoglobin digestion and are believed to exert significant oxidative stress on the parasite. We have characterized a cell permeant, far red fluorescent nucleic acid-binding dye, SYTO 61, that can be used to distinguish between uninfected and infected erythrocytes in a flow cytometric format. The spectral properties of SYTO 61 make it suitable for use in combination with the fluorescent reactive oxygen species reporter 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate acetyl ester. We have used this probe combination to measure oxidative stress in different stages of live P. falciparum. Low levels of the oxidized, fluorescent form of the reporter (2',7'-dichlorofluorescein, DCF) are detected in ring stage parasites; the DCF signal increases as the intraerythrocytic parasite matures into the trophozoite stage where active hemoglobin digestion occurs. Treatment of infected erythrocytes with the cysteine protease inhibitor, E-64, which inhibits hemoglobin digestion, decreases the DCF signal. We show that E-64 prevents schizont rupture but also causes delayed lethal effects when ring stage cultures are exposed to the drug. We also examined cultures of parasites in erythrocytes harboring 98% catalase inactivation and found no effect on growth and only a modest increase in DCF oxidation.
Collapse
Affiliation(s)
- Ying Fu
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM. Microfluidic single-cell array cytometry for the analysis of tumor apoptosis. Anal Chem 2009; 81:5517-23. [PMID: 19514700 DOI: 10.1021/ac9008463] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Limitations imposed by conventional analytical technologies for cell biology, such as flow cytometry or microplate imaging, are often prohibitive for the kinetic analysis of single-cell responses to therapeutic compounds. In this paper, we describe the application of a microfluidic array to the real-time screening of anticancer drugs against arrays of single cells. The microfluidic platform comprises an array of micromechanical traps, designed to passively corral individual nonadherent cells. This platform, fabricated in the biologically compatible elastomer poly(dimethylsiloxane), PDMS, enables hydrodynamic trapping of cells in low shear stress zones, enabling time-lapse studies of nonadherent hematopoietic cells. Results indicate that these live-cell, microfluidic microarrays can be readily applied to kinetic analysis of investigational anticancer agents in hematopoietic cancer cells, providing new opportunities for automated microarray cytometry and higher-throughput screening. We also demonstrate the ability to quantify on-chip the anticancer drug induced apoptosis. Specifically, we show that with small numbers of trapped cells (approximately 300) under careful serial observation we can achieve results with only slightly greater statistical spread than can be obtained with single-pass flow cytometer measurements of 15,000-30,000 cells.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Bioelectronics Research Centre, Department of Electronics and Electrical Engineering, University of Glasgow, G12 8LT, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Zhao H, Traganos F, Dobrucki J, Wlodkowic D, Darzynkiewicz Z. Induction of DNA damage response by the supravital probes of nucleic acids. Cytometry A 2009; 75:510-9. [PMID: 19373929 DOI: 10.1002/cyto.a.20727] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to assess the potential DNA damage response (DDR) to four supravitally used biomarkers Hoechst 33342 (Ho 42), DRAQ5, DyeCycle Violet (DCV), and SYTO 17. A549 cells were exposed to these biomarkers at concentrations generally applied to live cells and their effect on histone H2AX (Ser 139), p53 (Ser15), ATM (Ser1981), and Chk2 (Thr68) phosphorylation was assessed using phospho-specific Abs. Short-term treatment with Ho 42 led to modest degree of ATM activation with no evidence of H2AX, Chk2, or p53 phosphorylation. However, pronounced ATM, Chk2, and p53 phosphorylation and perturbed G(2) progression were seen after 18 h. While short-term treatment with DRAQ5 induced ATM activation with no effect on H2AX, Chk2, and p53, dramatic changes marked by a high degree of H2AX, ATM, Chk2, and p53 phosphorylation, all occurring predominantly in S phase cells, and a block in cell cycle progression, were seen after 18 h exposure. These changes suggest that the DRAQ5-induced DNA lesions may become converted into double-strand DNA breaks during replication. Exposure to DCV also led to an increase in the level of activated ATM and Chk2 as well as of phosphorylated p53 and accumulation of cells in G(2)M and S phase. Exposure to SYTO 17 had no significant effect on any of the measured parameters. The data indicate that supravital use of Ho 42, DRAQ5, and DCV induces various degrees of DDR, including activation of ATM, Chk2 and p53, which may have significant consequences on regulatory cell cycle pathways and apoptosis.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
23
|
Wlodkowic D, Skommer J, McGuinness D, Faley S, Kolch W, Darzynkiewicz Z, Cooper JM. Chip-based dynamic real-time quantification of drug-induced cytotoxicity in human tumor cells. Anal Chem 2009; 81:6952-9. [PMID: 19572560 PMCID: PMC3977701 DOI: 10.1021/ac9010217] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SY-R), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Bioelectronics Research Center, Department of Electronics and Electrical Engineering, University of Glasgow, G12 8LT Glasgow, U.K
| | - Joanna Skommer
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Dagmara McGuinness
- Women's Reproductive Health Research Center, Medical Center North, Vanderbilt University, Nashville, TN
| | - Shannon Faley
- The Bioelectronics Research Center, Department of Electronics and Electrical Engineering, University of Glasgow, G12 8LT Glasgow, U.K
| | - Walter Kolch
- The Beatson Institute for Cancer Research, Glasgow, U.K
| | | | - Jonathan M. Cooper
- The Bioelectronics Research Center, Department of Electronics and Electrical Engineering, University of Glasgow, G12 8LT Glasgow, U.K
| |
Collapse
|
24
|
Wlodkowic D, Skommer J, Faley S, Darzynkiewicz Z, Cooper JM. Dynamic analysis of apoptosis using cyanine SYTO probes: from classical to microfluidic cytometry. Exp Cell Res 2009; 315:1706-14. [PMID: 19298813 DOI: 10.1016/j.yexcr.2009.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/25/2009] [Accepted: 03/05/2009] [Indexed: 01/09/2023]
Abstract
Cell death is a stochastic process, often initiated and/or executed in a multi-pathway/multi-organelle fashion. Therefore, high-throughput single-cell analysis platforms are required to provide detailed characterization of kinetics and mechanisms of cell death in heterogeneous cell populations. However, there is still a largely unmet need for inert fluorescent probes, suitable for prolonged kinetic studies. Here, we compare the use of innovative adaptation of unsymmetrical SYTO dyes for dynamic real-time analysis of apoptosis in conventional as well as microfluidic chip-based systems. We show that cyanine SYTO probes allow non-invasive tracking of intracellular events over extended time. Easy handling and "stain-no wash" protocols open up new opportunities for high-throughput analysis and live-cell sorting. Furthermore, SYTO probes are easily adaptable for detection of cell death using automated microfluidic chip-based cytometry. Overall, the combined use of SYTO probes and state-of-the-art Lab-on-a-Chip platform emerges as a cost effective solution for automated drug screening compared to conventional Annexin V or TUNEL assays. In particular, it should allow for dynamic analysis of samples where low cell number has so far been an obstacle, e.g. primary cancer stems cells or circulating minimal residual tumors.
Collapse
Affiliation(s)
- Donald Wlodkowic
- Department of Electronics and Electrical Engineering, The Bioelectronics Research Center, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
25
|
Wlodkowic D, Darzynkiewicz Z. Please do not disturb: destruction of chromatin structure by supravital nucleic acid probes revealed by a novel assay of DNA-histone interaction. Cytometry A 2008; 73:877-9. [PMID: 18671237 DOI: 10.1002/cyto.a.20622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Donald Wlodkowic
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom.
| | | |
Collapse
|
26
|
Schermann C, Fischer G, Witt V, Kurz M, Pötschger U, Fritsch G. Detection of human cytomegalovirus-specific T lymphocytes in human blood: comparison of two methods. Cytotherapy 2008; 10:834-41. [DOI: 10.1080/14653240802474315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|