1
|
Pelicci S, Furia L, Pelicci PG, Faretta M. Correlative Multi-Modal Microscopy: A Novel Pipeline for Optimizing Fluorescence Microscopy Resolutions in Biological Applications. Cells 2023; 12:cells12030354. [PMID: 36766696 PMCID: PMC9913119 DOI: 10.3390/cells12030354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The modern fluorescence microscope is the convergence point of technologies with different performances in terms of statistical sampling, number of simultaneously analyzed signals, and spatial resolution. However, the best results are usually obtained by maximizing only one of these parameters and finding a compromise for the others, a limitation that can become particularly significant when applied to cell biology and that can reduce the spreading of novel optical microscopy tools among research laboratories. Super resolution microscopy and, in particular, molecular localization-based approaches provide a spatial resolution and a molecular localization precision able to explore the scale of macromolecular complexes in situ. However, its use is limited to restricted regions, and consequently few cells, and frequently no more than one or two parameters. Correlative microscopy, obtained by the fusion of different optical technologies, can consequently surpass this barrier by merging results from different spatial scales. We discuss here the use of an acquisition and analysis correlative microscopy pipeline to obtain high statistical sampling, high content, and maximum spatial resolution by combining widefield, confocal, and molecular localization microscopy.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Correspondence:
| |
Collapse
|
2
|
Rosenberg CA, Bill M, Rodrigues MA, Hauerslev M, Kerndrup GB, Hokland P, Ludvigsen M. Exploring dyserythropoiesis in patients with myelodysplastic syndrome by imaging flow cytometry and machine-learning assisted morphometrics. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:554-567. [PMID: 33285035 DOI: 10.1002/cyto.b.21975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The hallmark of myelodysplastic syndrome (MDS) remains dysplasia in the bone marrow (BM). However, diagnosing MDS may be challenging and subject to inter-observer variability. Thus, there is an unmet need for novel objective, standardized and reproducible methods for evaluating dysplasia. Imaging flow cytometry (IFC) offers combined analyses of phenotypic and image-based morphometric parameters, for example, cell size and nuclearity. Hence, we hypothesized IFC to be a useful tool in MDS diagnostics. METHODS Using a different-from-normal approach, we investigated dyserythropoiesis by quantifying morphometric features in a median of 5953 erythroblasts (range: 489-68,503) from 14 MDS patients, 11 healthy donors, 6 non-MDS controls with increased erythropoiesis, and 6 patients with cytopenia. RESULTS First, we morphometrically confirmed normal erythroid maturation, as immunophenotypically defined erythroid precursors could be sequenced by significantly decreasing cell-, nuclear- and cytoplasm area. In MDS samples, we demonstrated cell size enlargement and increased fractions of macronormoblasts in late-stage erythroblasts (both p < .0001). Interestingly, cytopenic controls with high-risk mutational patterns displayed highly aberrant cell size morphometrics. Furthermore, assisted by machine learning algorithms, we reliably identified and enumerated true binucleated erythroblasts at a significantly higher frequency in two out of three erythroblast maturation stages in MDS patients compared to normal BM (both p = .0001). CONCLUSION We demonstrate proof-of-concept results of the applicability of automated IFC-based techniques to study and quantify morphometric changes in dyserythropoietic BM cells. We propose that IFC holds great promise as a powerful and objective tool in the complex setting of MDS diagnostics with the potential for minimizing inter-observer variability.
Collapse
Affiliation(s)
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mathias Hauerslev
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Gitte B Kerndrup
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Hokland
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Hui HY, Clarke KM, Fuller KA, Stanley J, Chuah HH, Ng TF, Cheah C, McQuillan A, Erber WN. “Immuno‐flowFISH” for the Assessment of Cytogenetic Abnormalities in Chronic Lymphocytic Leukemia. Cytometry A 2019; 95:521-533. [DOI: 10.1002/cyto.a.23769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Henry Y.L. Hui
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Kathryn M. Clarke
- Haemato‐Oncology Diagnostic Service, Department of HaematologyAddenbrooke's Hospital, Cambridge University Hospital, NHS Foundation Trust Cambridge UK
| | - Kathryn A. Fuller
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
- PathWest Laboratory Medicine Nedlands Western Australia Australia
| | - Jason Stanley
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Hun H. Chuah
- Department of HaematologyRoyal Perth Hospital Perth Western Australia Australia
| | - Teng Fong Ng
- Department of HaematologyRoyal Perth Hospital Perth Western Australia Australia
| | - Chan Cheah
- Department of HaematologySir Charles Gairdner Hospital Nedlands Western Australia Australia
- Department of HaematologyHollywood Private Hospital Nedlands Western Australia Australia
| | - Andrew McQuillan
- Department of HaematologyHollywood Private Hospital Nedlands Western Australia Australia
| | - Wendy N. Erber
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
- PathWest Laboratory Medicine Nedlands Western Australia Australia
| |
Collapse
|
4
|
Early treatment of acute promyelocytic leukaemia is accurately guided by the PML protein localisation pattern: real-life experience from a tertiary New Zealand centre. Pathology 2019; 51:412-420. [PMID: 30876657 DOI: 10.1016/j.pathol.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 01/31/2023]
Abstract
Current guidelines recommend that a rapid test be used to assist diagnosis of acute promyelocytic leukaemia (APL), but the choice of an assay is discretionary. PML immunofluorescence (PML IF) identifies the microparticulate pattern of the PML protein localisation, highly specific for APL. The aim of this study was to evaluate clinical utility of PML IF in a real-life setting based on a retrospective records review for all patients who had PML IF performed in our centre between 2000 and 2017. Final analysis included 151 patients, 70 of whom had APL. PML IF was reported on average 3 days faster than cytogenetics. Compared with genetic results, PML IF showed sensitivity of 96% and specificity of 100%. PML IF accurately predicted APL in four APL cases with cryptic karyotype/FISH and excluded APL in 98% cases tested based on the suspicious immunophenotype alone, 21/28 of whom had mutated NPM1. Results of PML IF influenced decision to start ATRA in 25 (36%) APL patients and led to its termination in six non-APL patients. In conclusion, PML IF is a fast and reliable test that facilitates accurate treatment decisions when APL is suspected. This performance of PML IF remains hard to match in a real-life setting.
Collapse
|
5
|
Grimwade LF, Fuller KA, Erber WN. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods 2017; 112:39-45. [DOI: 10.1016/j.ymeth.2016.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
|
6
|
He G, Wang C, Li Q, Tan H, Chen F, Huang Z, Yu B, Zheng L, Zheng R, Liu D. Clinical and laboratory features of seven patients with acute myeloid leukemia (AML)-M2/M3 and elevated myeloblasts and abnormal promyelocytes. Cancer Cell Int 2014; 14:111. [PMID: 25678855 PMCID: PMC4325959 DOI: 10.1186/s12935-014-0111-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Background There is limited information on a special subtype of Acute myeloid leukemia (AML) characterized by >20% myeloblasts and >20% abnormal promyelocytes in bone marrow and peripheral blood. Objective The objective of the present investigation was to explore the clinical and laboratory features of seven patients with AML-M2/M3. Method We retrospectively assessed cell morphology, cytochemistry, immunophenotype, cytogenetics, and clinical features of seven patients with this rare subtype of AML. Results All seven cases had thrombocytopenia, coagulation abnormalities, >20% myeloblasts and abnormal promyelocytes. The PML/RARα fusion gene was present in six patients and two patients presented a mixed PML/RARα and AML1/ETO genotype. Five cases achieved CR and two cases did not achieve remission and one case transform into AML-M2 after CR1. Conclusions The clinical and laboratory features of seven patients with AML-M2/M3 are demonstrated in the present study, providing information on the FAB sub-classification.
Collapse
Affiliation(s)
- GanLin He
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| | - ChunYan Wang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| | - QingEn Li
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| | - FuXiong Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road, Guangzhou, China
| | - ZhenQian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| | - BaoDan Yu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road, Guangzhou, China
| | - LiXia Zheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road, Guangzhou, China
| | - RunHui Zheng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| | - Dan Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, 510000 Guangzhou, China
| |
Collapse
|
7
|
Piyasena ME, Graves SW. The intersection of flow cytometry with microfluidics and microfabrication. LAB ON A CHIP 2014; 14:1044-59. [PMID: 24488050 PMCID: PMC4077616 DOI: 10.1039/c3lc51152a] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A modern flow cytometer can analyze and sort particles on a one by one basis at rates of 50,000 particles per second. Flow cytometers can also measure as many as 17 channels of fluorescence, several angles of scattered light, and other non-optical parameters such as particle impedance. More specialized flow cytometers can provide even greater analysis power, such as single molecule detection, imaging, and full spectral collection, at reduced rates. These capabilities have made flow cytometers an invaluable tool for numerous applications including cellular immunophenotyping, CD4+ T-cell counting, multiplex microsphere analysis, high-throughput screening, and rare cell analysis and sorting. Many bio-analytical techniques have been influenced by the advent of microfluidics as a component in analytical tools and flow cytometry is no exception. Here we detail the functions and uses of a modern flow cytometer, review the recent and historical contributions of microfluidics and microfabricated devices to field of flow cytometry, examine current application areas, and suggest opportunities for the synergistic application of microfabrication approaches to modern flow cytometry.
Collapse
Affiliation(s)
- Menake E. Piyasena
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM USA
- Department of Chemistry, New Mexico Tech, Socorro, NM USA
| | - Steven W. Graves
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM USA
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM USA, FAX: 15052771979; TEL:15052772043
| |
Collapse
|
8
|
Jin D, Lu Y, Leif RC, Yang S, Rajendran M, Miller LW. How to build a time-gated luminescence microscope. ACTA ACUST UNITED AC 2014; 67:2.22.1-2.22.36. [PMID: 24510771 DOI: 10.1002/0471142956.cy0222s67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sensitivity of filter-based fluorescence microscopy techniques is limited by autofluorescence background. Time-gated detection is a practical way to suppress autofluorescence, enabling higher contrast and improved sensitivity. In the past few years, three groups of authors have demonstrated independent approaches to build robust versions of time-gated luminescence microscopes. Three detailed, step-by-step protocols are provided here for modifying standard fluorescent microscopes to permit imaging time-gated luminescence.
Collapse
Affiliation(s)
- Dayong Jin
- Advanced Cytometry Laboratories, MQ BioFocus Research Centre & Photonics Research Centre, Macquarie University, New South Wales, Australia
| | - Yiqing Lu
- Advanced Cytometry Laboratories, MQ BioFocus Research Centre & Photonics Research Centre, Macquarie University, New South Wales, Australia
| | | | - Sean Yang
- Newport Instruments, San Diego, California
| | - Megha Rajendran
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Abstract
Within the last 25 years, flow cytometry and fluorescence-activated cell sorting have emerged as both routine diagnostic tools in clinical medicine and as advanced analytic tools critical in performing scientific research. This chapter aims at summarizing the use of flow cytometry in benign and malignant hematology and the monitoring of inherited and acquired immunodeficiency states. Numerous figures are provided from our laboratories at Massachusetts General Hospital that illustrate examples of these conditions. The chapter also describes novel flow cytometry-based imaging techniques, the combination of flow cytometry and mass spectrography, new software tools, and some future directions and applications of advanced instrumentation for flow cytometry.
Collapse
Affiliation(s)
- Daniela S Krause
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
10
|
Heel K, Tabone T, Röhrig KJ, Maslen PG, Meehan K, Grimwade LF, Erber WN. Developments in the immunophenotypic analysis of haematological malignancies. Blood Rev 2013; 27:193-207. [PMID: 23845589 DOI: 10.1016/j.blre.2013.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunophenotyping is the method by which antibodies are used to detect cellular antigens in clinical samples. Although the major role is in the diagnosis and classification of haematological malignancies, applications have expanded over the past decade. Immunophenotyping is now used extensively for disease staging and monitoring, to detect surrogate markers of genetic aberrations, to identify potential immuno-therapeutic targets and to aid prognostic prediction. This expansion in applications has resulted from developments in antibodies, methodology, automation and data handling. In this review we describe recent advances in both the technology and applications for the analysis of haematological malignancies. We highlight the importance of the expanding repertoire of testing capability for diagnostic, prognostic and therapeutic applications. The impact and significance of immunophenotyping in the assessment of haematological neoplasms are evident.
Collapse
Affiliation(s)
- Kathy Heel
- Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Furia L, Pelicci PG, Faretta M. A computational platform for robotized fluorescence microscopy (I): high-content image-based cell-cycle analysis. Cytometry A 2013; 83:333-43. [PMID: 23463605 DOI: 10.1002/cyto.a.22266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 01/11/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hardware automation and software development have allowed a dramatic increase of throughput in both acquisition and analysis of images by associating an optimized statistical significance with fluorescence microscopy. Despite the numerous common points between fluorescence microscopy and flow cytometry (FCM), the enormous amount of applications developed for the latter have found relatively low space among the modern high-resolution imaging techniques. With the aim to fulfill this gap, we developed a novel computational platform named A.M.I.CO. (Automated Microscopy for Image-Cytometry) for the quantitative analysis of images from widefield and confocal robotized microscopes. Thanks to the setting up of both staining protocols and analysis procedures, we were able to recapitulate many FCM assays. In particular, we focused on the measurement of DNA content and the reconstruction of cell-cycle profiles with optimal parameters. Standard automated microscopes were employed at the highest optical resolution (200 nm), and white-light sources made it possible to perform an efficient multiparameter analysis. DNA- and protein-content measurements were complemented with image-derived information on their intracellular spatial distribution. Notably, the developed tools create a direct link between image-analysis and acquisition. It is therefore possible to isolate target populations according to a definite quantitative profile, and to relocate physically them for diffraction-limited data acquisition. Thanks to its flexibility and analysis-driven acquisition, A.M.I.CO. can integrate flow, image-stream and laser-scanning cytometry analysis, providing high-resolution intracellular analysis with a previously unreached statistical relevance.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus for Oncogenomics, Milano 20139, Italy
| | | | | |
Collapse
|
12
|
Grimwade L, Gudgin E, Bloxham D, Bottley G, Vassiliou G, Huntly B, Scott MA, Erber WN. Detection of cytoplasmic nucleophosmin expression by imaging flow cytometry. Cytometry A 2012; 81:896-900. [DOI: 10.1002/cyto.a.22116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022]
|
13
|
Rollins-Raval MA, Raval JS, Contis L. Experience with CellaVision DM96 for peripheral blood differentials in a large multi-center academic hospital system. J Pathol Inform 2012; 3:29. [PMID: 23024888 PMCID: PMC3445303 DOI: 10.4103/2153-3539.100154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/31/2012] [Indexed: 12/11/2022] Open
Abstract
Context and Aims: Rapid, accurate peripheral blood differentials are essential to maintain standards of patient care. CellaVision DM96 (CellaVision AB, Lund, Sweden) (CV) is an automated digital morphology and informatics system used to locate, pre-classify, store and transmit images of platelets, red and white blood cells to a trained technologist who confirms or edits CV cell classification. We assessed our experience with CV by evaluating sensitivity, specificity, positive predictive value and negative predictive value for CV in three different patient populations. Materials and Methods: We analyzed classification accuracy of CV for white blood cells, erythroblasts, platelets and artefacts over six months for three different university hospitals using CV. Results: CV classified 211,218 events for the adult cancer center; 51,699 events for the adult general hospital; and 8,009 events for the children's hospital with accuracy of CV being 93%, 87.3% and 95.4% respectively. Sensitivity and positive predictive value were <80% for immature granulocytes (band neutrophil, promyelocyte, myelocyte and metamyelocytes) (differences usually within one stage of maturation). Cell types comprising a lower frequency of the total events, including blasts, showed lower accuracy at some sites. Conclusions: The reduced immature granulocyte classification accuracy may be due in part to the subjectivity in classification of these cells, length of experience with the system and individual expertise of the technologist. Cells with low sensitivity and positive predictive value comprised a minority of the cells and should not significantly affect the technologist re-classification time. CV serves as a clinically useful instrument in performance of peripheral blood differentials.
Collapse
|