1
|
Lu Z, Zhu L, Yi C, Su B, Wang R. C5a/C5aR regulates Th1/Th2 imbalance in sepsis-associated lung injury by promoting neutrophil activation to increase PAD4 expression. Ann Med 2025; 57:2447406. [PMID: 39831526 PMCID: PMC11749016 DOI: 10.1080/07853890.2024.2447406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes. Therefore, this study investigated the effect of C5a/C5a receptor (C5aR)/Peptidylarginine deiminase 4 (PAD4) on the Th1/Th2 ratio in sepsis-induced lung injury. METHODS ELISA was used to detect the expression of PAD4, HBP, MPO, IL-1β, IL-10, IL-6, IL-4, syndecan-1, endocan and H3Cit. An LPS-induced septic lung injury mouse model was constructed, with HE and PAS stains evaluating lung damage. BCA kit quantified BALF total protein, Western blot examined C5aR, syndecan-1, endocan, PAD4 levels, while TUNEL and flow cytometry assessed tissue cellular apoptosis. Furthermore, flow cytometry was used to detect the +Th1 and Th2 cells proportion in peripheral blood, and CCK-8 was used to detect BEAS-2B activity. RESULTS The results indicated that PAD4 and inflammatory factors were increased in lesion samples compared with controls. In sepsis-induced lung injury mice, addition of GSK484, a PAD4 inhibitor, effectively alleviated sepsis-induced lung edema and inflammatory responses. GSK484 was found to inhibit C5a/C5aR expression and suppress apoptosis and lung injury. Furthermore, GSK484 markedly inhibited Th1 cell phenotypes in vitro. Additionally, GSK484 intervention on Th1 cell phenotype further affected lung epithelial cell injury. CONCLUSION In summary, we revealed the mechanism of C5a/C5aR-induced PAD4 upregulation via neutrophil activation in sepsis-associated lung injury, causing a Th1/Th2 imbalance and lung injury, providing a novel approach for sepsis-associated lung injuries treatment.
Collapse
Affiliation(s)
- Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changlin Yi
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bi Su
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kumavat R, Kumar V, Biswas S. Differential Expression of Fibrinogen Alpha and Its Potential Involvement in Osteoarthritis Pathogenesis. Mol Biotechnol 2025; 67:104-114. [PMID: 38182865 DOI: 10.1007/s12033-023-00983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/05/2023] [Indexed: 01/07/2024]
Abstract
The deterioration of cartilage tissue and other joint components composed of synovial tissue is a defining characteristic of osteoarthritis (OA) disease. Because of the lack of understanding of the underlying cause and important molecular pathways, there are currently no effective diagnostic or treatment methods for OA. The purpose of the study is to find a specific protein biomarker with high sensitivity and specificity in order to understand the pathophysiology of the disease and the underlying molecular pathways. We examined plasma samples of matched age and sex from OA patients (n = 150) and healthy controls (HC) (n = 70) to find proteins that were differentially expressed and validated by western blotting, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence. The results of western blotting demonstrated that the expression level of the fibrinogen alpha (FGA) protein was higher in plasma samples of osteoarthritis (OAPL) (p = 0.0343), and the ROC (receiver operating characteristic curve) curve supported the high sensitivity (95.22%) and specificity (74%) of FGA in OA plasma compared to healthy controls. FGA protein was detected to be deposited in the synovial tissue of OA patients (p = 0.0073). By activating the Toll-like receptor (TLR-4) receptor pathway in PBMCs (p = 0.04) and synovial tissue, FGA protein may be involved in the molecular mechanism of OA pathogenesis. Our findings collectively suggested that FGA, which is significantly expressed in OA plasma, synovial tissue, and PBMCs and is connected to the disease's advancement through the TLR-4 receptor, may serve as a diagnostic or disease-evolving tool for OA.
Collapse
Affiliation(s)
- Rajkamal Kumavat
- Council of Scientific &Industrial Research (CSIR) - Institute of Genomics & Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sagarika Biswas
- Council of Scientific &Industrial Research (CSIR) - Institute of Genomics & Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Genomics & Molecular Medicine, Institute of Genomics and Integrative Biology, New Delhi, 110007, India.
| |
Collapse
|
3
|
Linke C, von Hänisch T, Schröder J, Dammermann W, Deckert PM, Reinwald M, Schwarzlose-Schwarck S. Heterogeneous Formation of DNA Double-Strand Breaks and Cell-Free DNA in Leukemia T-Cell Line and Human Peripheral Blood Mononuclear Cells in Response to Topoisomerase II Inhibitors. Cancers (Basel) 2024; 16:3798. [PMID: 39594753 PMCID: PMC11592837 DOI: 10.3390/cancers16223798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Improving precision medicine in chemotherapy requires highly sensitive and easily applicable diagnostic tools. In addition, non-invasive molecular real-time monitoring of cytotoxic response is highly desirable. Here, we employed the kinetics of DNA double-strand breaks (DSB) and cell-free DNA (cfDNA) in a cell model of topoisomerase II-inhibitors in T cell leukemia (Jurkat cells) compared to normal cells (peripheral blood mononuclear cells, PBMCs). METHODS We applied automated microscopy to quantify immuno-stained phosphorylated H2AX (γH2AX) as a marker for either DNA damage response (DDR) or cell death and quantitative PCR-based analysis of nuclear and mitochondrial cfDNA concentrations. RESULTS Jurkat cells displayed a DDR to cytotoxic drug treatment significantly earlier than PBMCs, and etoposide (ETP) induced DSB formation faster than doxorubicin (DOX) in both Jurkat and PBMCs. Jurkat cells exhibited an earlier cytotoxic response compared to PBMC, with a significantly increased mitochondrial cfDNA formation after 2 h of DOX application. In PBMCs, increased cell death was detected after 4 h of incubation with ETP, whereas DOX treatment was less effective. CONCLUSIONS Both automated microscopy and mitochondrial cfDNA quantification analysis indicate that (malignant) Jurkat cells are more sensitive to DOX than (healthy) PBMC. Our real-time approach can improve DDR inducing drug selection and adaptation in cancer therapy and aids in decisions for optimal patient biosampling.
Collapse
Affiliation(s)
- Christian Linke
- Department of Hematology and Oncology, Center for Translational Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany; (T.v.H.); (J.S.); (P.M.D.); (M.R.); (S.S.-S.)
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany;
| | - Thilo von Hänisch
- Department of Hematology and Oncology, Center for Translational Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany; (T.v.H.); (J.S.); (P.M.D.); (M.R.); (S.S.-S.)
| | - Julia Schröder
- Department of Hematology and Oncology, Center for Translational Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany; (T.v.H.); (J.S.); (P.M.D.); (M.R.); (S.S.-S.)
| | - Werner Dammermann
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany;
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
| | - Peter Markus Deckert
- Department of Hematology and Oncology, Center for Translational Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany; (T.v.H.); (J.S.); (P.M.D.); (M.R.); (S.S.-S.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
| | - Mark Reinwald
- Department of Hematology and Oncology, Center for Translational Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany; (T.v.H.); (J.S.); (P.M.D.); (M.R.); (S.S.-S.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
| | - Sandra Schwarzlose-Schwarck
- Department of Hematology and Oncology, Center for Translational Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany; (T.v.H.); (J.S.); (P.M.D.); (M.R.); (S.S.-S.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
4
|
Křížkovská B, Schätz M, Lipov J, Viktorová J, Jablonská E. In Vitro High-Throughput Genotoxicity Testing Using γH2AX Biomarker, Microscopy and Reproducible Automatic Image Analysis in ImageJ—A Pilot Study with Valinomycin. Toxins (Basel) 2023; 15:toxins15040263. [PMID: 37104201 PMCID: PMC10146355 DOI: 10.3390/toxins15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
(1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Schätz
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
5
|
Assessment of extracorporeal photopheresis related cell damage. Transfus Apher Sci 2022; 61:103472. [DOI: 10.1016/j.transci.2022.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
6
|
LEDGF/p75 Is Required for an Efficient DNA Damage Response. Int J Mol Sci 2021; 22:ijms22115866. [PMID: 34070855 PMCID: PMC8198318 DOI: 10.3390/ijms22115866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Lens epithelium-derived growth factor splice variant of 75 kDa (LEDGF/p75) plays an important role in cancer, but its DNA-damage repair (DDR)-related implications are still not completely understood. Different LEDGF model cell lines were generated: a complete knock-out of LEDGF (KO) and re-expression of LEDGF/p75 or LEDGF/p52 using CRISPR/Cas9 technology. Their proliferation and migration capacity as well as their chemosensitivity were determined, which was followed by investigation of the DDR signaling pathways by Western blot and immunofluorescence. LEDGF-deficient cells exhibited a decreased proliferation and migration as well as an increased sensitivity toward etoposide. Moreover, LEDGF-depleted cells showed a significant reduction in the recruitment of downstream DDR-related proteins such as replication protein A 32 kDa subunit (RPA32) after exposure to etoposide. The re-expression of LEDGF/p75 rescued all knock-out effects. Surprisingly, untreated LEDGF KO cells showed an increased amount of DNA fragmentation combined with an increased formation of γH2AX and BRCA1. In contrast, the protein levels of ubiquitin-conjugating enzyme UBC13 and nuclear proteasome activator PA28γ were substantially reduced upon LEDGF KO. This study provides for the first time an insight that LEDGF is not only involved in the recruitment of CtIP but has also an effect on the ubiquitin-dependent regulation of DDR signaling molecules and highlights the role of LEDGF/p75 in homology-directed DNA repair.
Collapse
|
7
|
Reddig A, Voss L, Guttek K, Roggenbuck D, Feist E, Reinhold D. Impact of Different JAK Inhibitors and Methotrexate on Lymphocyte Proliferation and DNA Damage. J Clin Med 2021; 10:jcm10071431. [PMID: 33916057 PMCID: PMC8036268 DOI: 10.3390/jcm10071431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Janus kinase inhibitors (JAKis) represent a new strategy in rheumatoid arthritis (RA) therapy. Still, data directly comparing different JAKis are rare. In the present in vitro study, we investigated the immunomodulatory potential of four JAKis (tofacitinib, baricitinib, upadacitinib, and filgotinib) currently approved for RA treatment by the European Medicines Agency. Increasing concentrations of JAKi or methotrexate, conventionally used in RA therapy, were either added to freshly mitogen-stimulated or preactivated peripheral blood mononuclear cells (PBMC), isolated from healthy volunteers. A comparable, dose-dependent inhibition of lymphocyte proliferation was observed in samples treated with tofacitinib, baricitinib, and upadacitinib, while dosage of filgotinib had to be two orders of magnitude higher. In contrast, antiproliferative effects were strongly attenuated when JAKi were added to preactivated PBMCs. High dosage of upadacitinib and filgotinib also affected cell viability. Further, analyses of DNA double-strand break markers γH2AX and 53BP1 indicated an enhanced level of DNA damage in cells incubated with high concentrations of filgotinib and a dose-dependent reduction in clearance of radiation-induced γH2AX foci in the presence of tofacitinib or baricitinib. Thereby, our study demonstrated a broad comparability of immunomodulatory effects induced by different JAKi and provided first indications, that (pan)JAKi may impair DNA damage repair in irradiated PBMCs.
Collapse
Affiliation(s)
- Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (D.R.)
- Correspondence: ; Tel.: +49-391-67-17842
| | - Linda Voss
- Institute of Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (D.R.)
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (D.R.)
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 01968 Senftenberg, Germany
| | - Eugen Feist
- Helios-Department of Rheumatology, Cooperation Partner of the Otto-Von-Guericke-University, 39245 Vogelsang-Gommern, Germany;
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (D.R.)
| |
Collapse
|
8
|
Köcher S, Volquardsen J, Perugachi Heinsohn A, Petersen C, Roggenbuck D, Rothkamm K, Mansour WY. Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation. DNA Repair (Amst) 2021; 102:103100. [PMID: 33812230 DOI: 10.1016/j.dnarep.2021.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022]
Abstract
Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated γH2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as γH2AX and 53BP1 in adherent tumor cells.
Collapse
Affiliation(s)
- S Köcher
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - J Volquardsen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Perugachi Heinsohn
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | - K Rothkamm
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Y Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Voss L, Guttek K, Reddig A, Reinhold A, Voss M, Schraven B, Reinhold D. Screening of FDA-Approved Drug Library Identifies Adefovir Dipivoxil as Highly Potent Inhibitor of T Cell Proliferation. Front Immunol 2021; 11:616570. [PMID: 33488629 PMCID: PMC7821167 DOI: 10.3389/fimmu.2020.616570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Repositioning of approved drugs for identifying new therapeutic purposes is an alternative, time and cost saving strategy to classical drug development. Here, we screened a library of 786 FDA-approved drugs to find compounds, which can potentially be repurposed for treatment of T cell-mediated autoimmune diseases. Investigating the effect of these diverse substances on mitogen-stimulated proliferation of both, freshly stimulated and pre-activated (48 h) peripheral blood mononuclear cells (PBMCs), we discovered Adefovir Dipivoxil (ADV) as very potent compound, which inhibits T cell proliferation in a nanomolar range. We further analyzed the influence of ADV on proliferation, activation, cytokine production, viability and apoptosis of freshly stimulated as well as pre-activated human T cells stimulated with anti-CD3/CD28 antibodies. We observed that ADV was capable of suppressing the proliferation in both T cell stimulation systems in a dose-dependent manner (50% inhibition [IC50]: 63.12 and 364.8 nM for freshly stimulated T cells and pre-activated T cells, respectively). Moreover, the drug impaired T cell activation and inhibited Th1 (IFN-γ), Th2 (IL-5), and Th17 (IL-17) cytokine production dose-dependently. Furthermore, ADV treatment induced DNA double-strand breaks (γH2AX foci expression), which led to an increase of p53-phospho-Ser15 expression. In response to DNA damage p21 and PUMA are transactivated by p53. Subsequently, this caused cell cycle arrest at G0/G1 phase and activation of the intrinsic apoptosis pathway. Our results indicate that ADV could be a new potential candidate for treatment of T cell-mediated autoimmune diseases. Prospective studies should be performed to verify this possible therapeutic application of ADV for such disorders.
Collapse
Affiliation(s)
- Linda Voss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infection and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infection and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infection and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Barbieri S, Babini G, Morini J, Friedland W, Buonanno M, Grilj V, Brenner DJ, Ottolenghi A, Baiocco G. Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures. Sci Rep 2019; 9:14019. [PMID: 31570741 PMCID: PMC6769049 DOI: 10.1038/s41598-019-50408-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
The consideration of how a given technique affects results of experimental measurements is a must to achieve correct data interpretation. This might be challenging when it comes to measurements on biological systems, where it is unrealistic to have full control (e.g. through a software replica) of all steps in the measurement chain. In this work we address how the effectiveness of different radiation qualities in inducing biological damage can be assessed measuring DNA damage foci yields, only provided that artefacts related to the scoring technique are adequately considered. To this aim, we developed a unified stochastic modelling approach that, starting from radiation tracks, predicts both the induction, spatial distribution and complexity of DNA damage, and the experimental readout of foci when immunocytochemistry coupled to 2D fluorescence microscopy is used. The approach is used to interpret γ-H2AX data for photon and neutron exposures. When foci are reconstructed in the whole cell nucleus, we obtain information on damage characteristics "behind" experimental observations, as the average damage content of a focus. We reproduce how the detection technique affects experimental findings, e.g. contributing to the saturation of foci yields scored at 30 minutes after exposure with increasing dose and to the lack of dose dependence for yields at 24 hours.
Collapse
Affiliation(s)
| | | | - Jacopo Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - Veljko Grilj
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | | | | |
Collapse
|
11
|
Rassamegevanon T, Löck S, Baumann M, Krause M, von Neubeck C. Comparable radiation response of ex vivo and in vivo irradiated tumor samples determined by residual γH2AX. Radiother Oncol 2019; 139:94-100. [PMID: 31445839 DOI: 10.1016/j.radonc.2019.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE a) To investigate if an ex vivo cultured and irradiated tumor biopsy reflects and predicts the radiation response of the corresponding in vivo irradiated tumor measured with the DNA double strand break marker γH2AX foci. MATERIALS AND METHODS Five human head and neck squamous cell carcinoma (hHNSCC) xenograft models were used. Fine needle biopsies were taken from anesthetized tumor-bearing NMRI nude mice prior to in vivo single dose irradiation (0, 2, 4, or 8 Gy) under ambient blood flow. Biopsies were ex vivo reoxygenated and irradiated with equivalent doses. Tumors and biopsies were fixed 24 h post irradiation, and γH2AX foci were assessed in oxygenated tumor regions. RESULTS Linear regression analysis showed comparable slopes of the residual γH2AX foci dose-response curves in four out of five hHNSCC models when in vivo and ex vivo cohorts were compared. The slopes from ex vivo biopsies and in vivo tumors could classify the respective tumor model as sensitive or resistant according to the intrinsic radiation sensitivity (TCD50). CONCLUSION The ability of ex vivo irradiated tumor biopsies to reflect and predict the intrinsic radiation response of in vivo tumors increases the translational potential of the ex vivo γH2AX foci assay as a diagnostic tool for clinical practice.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany.
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
13
|
Debelec-Butuner B, Bostancı A, Ozcan F, Singin O, Karamil S, Aslan M, Roggenbuck D, Korkmaz KS. Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer. Cancer Invest 2019; 37:113-126. [PMID: 30836777 DOI: 10.1080/07357907.2019.1576192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 8-hydroxy-2'-deoxyguanosine (8-OHdG) damages are base damages induced by reactive oxygen species. We aimed to investigate the role of Androgen Receptor and NKX3.1 in 8-OHdG formation and repair activation by quantitating the DNA damage using Aklides.NUK system. The data demonstrated that the loss of NKX3.1 resulted in increased oxidative DNA damage and its overexpression contributes to the removal of menadione-induced 8-OHdG damage even under oxidative stress conditions. Moreover, 8-oxoguanine DNA glycosylase-1 (OGG1) expression level positively correlates to NKX3.1 expression. Also in this study, first time a reliable cell-based quantitation method for 8-OHdG damages is reported and used for data collection.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- a Department of Pharmaceutical Biotechnology, Faculty of Pharmacy , Ege University , Izmir , Turkey
| | - Aykut Bostancı
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Filiz Ozcan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Oznur Singin
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Selda Karamil
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Mutay Aslan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Dirk Roggenbuck
- d Medipan GmBH , Dahlewitz , Germany.,e Faculty Environment and Natural Sciences , Brandenburg University of Technology Cottbus-Senftenberg , Senftenberg , Germany
| | - Kemal Sami Korkmaz
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| |
Collapse
|
14
|
Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology 2019; 412:37-47. [DOI: 10.1016/j.tox.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
|
15
|
Friebe B, Godenschweger F, Fatahi M, Speck O, Roggenbuck D, Reinhold D, Reddig A. The potential toxic impact of different gadolinium-based contrast agents combined with 7-T MRI on isolated human lymphocytes. Eur Radiol Exp 2018; 2:40. [PMID: 30483972 PMCID: PMC6258802 DOI: 10.1186/s41747-018-0069-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background To investigate a potentially amplifying genotoxic or cytotoxic effect of different gadolinium-based contrast agents (GBCAs) in combination with ultra-high-field 7-T magnetic resonance imaging (MRI) exposure in separated human peripheral blood lymphocytes. Methods This in vitro study was approved by the local ethics committee and written informed consent was obtained from all participants. Isolated lymphocytes from twelve healthy donors were incubated with gadobutrol, gadoterate meglumine, gadodiamide, gadopentetate dimeglumine, or gadoxetate either alone or combined with 7-T MRI (1 h). Deoxyribonucleic acid (DNA) double-strand breaks were assessed 15 min after MRI exposure by automated γH2AX foci quantification. Cytotoxicity was determined at later endpoints by Annexin V/propidium iodide apoptosis assay (24 h) and [3H]-thymidine proliferation test (72 h). As a reference, lymphocytes from four different donors were exposed analogously to iodinated contrast agents (iomeprol, iopromide) in combination with computed tomography. Results Baseline γH2AX levels (0.08 ± 0.02 foci/cell) were not significantly (p between 0.135 and 1.000) enhanced after administration of GBCAs regardless of MRI exposure. In contrast to the two investigated macrocyclic GBCAs, lymphocytes exposed to the three linear GBCAs showed a dose-dependent increase in apoptosis (maximum 186% of unexposed control, p < 0.001) and reduced proliferation rate (minimum 0.7% of unexposed control, p < 0.001). However, additional 7-T MRI co-exposure did not alter GBCA-induced cytotoxicity. Conclusions Exposure of lymphocytes to different GBCAs did not reveal significant induction of γH2AX foci, and enhanced cytotoxicity was only observed in lymphocytes treated with the linear GBCAs used in this study, independent of additional 7-T MRI co-exposure. Electronic supplementary material The online version of this article (10.1186/s41747-018-0069-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Björn Friebe
- Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Frank Godenschweger
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Mahsa Fatahi
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, 39118, Magdeburg, Germany.,German Center for Neurodegenerative Disease, Site Magdeburg, 39120, Magdeburg, Germany
| | - Dirk Roggenbuck
- Medipan GmbH, 15827, Dahlewitz, Berlin, Germany.,Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01958, Senftenberg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
16
|
Rassamegevanon T, Löck S, Baumann M, Krause M, von Neubeck C. Heterogeneity of γH2AX Foci Increases in Ex Vivo Biopsies Relative to In Vivo Tumors. Int J Mol Sci 2018; 19:E2616. [PMID: 30181446 PMCID: PMC6163410 DOI: 10.3390/ijms19092616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The biomarker for DNA double stand breaks, gammaH2AX (γH2AX), holds a high potential as an intrinsic radiosensitivity predictor of tumors in clinical practice. Here, two published γH2AX foci datasets from in and ex vivo exposed human head and neck squamous cell carcinoma (hHNSCC) xenografts were statistically re-evaluated for the effect of the assay setting (in or ex vivo) on cellular geometry and the degree of heterogeneity in γH2AX foci. Significant differences between the nucleus areas of in- and ex vivo exposed samples were found. However, the number of foci increased linearly with nucleus area in irradiated samples of both settings. Moreover, irradiated tumor cells showed changes of nucleus area distributions towards larger areas compared to unexposed samples, implying cell cycle alteration after radiation exposure. The number of residual γH2AX foci showed a higher degree of intra-tumoral heterogeneity in the ex vivo exposed samples relative to the in vivo exposed samples. In the in vivo setting, the highest intra-tumoral heterogeneity was observed in initial γH2AX foci numbers (foci detected 30 min following irradiation). These results suggest that the tumor microenvironment and the culture condition considerably influence cellular adaptation and DNA damage repair.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.
| | - Cläre von Neubeck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Sowa M, Hiemann R, Schierack P, Reinhold D, Conrad K, Roggenbuck D. Next-Generation Autoantibody Testing by Combination of Screening and Confirmation-the CytoBead® Technology. Clin Rev Allergy Immunol 2017; 53:87-104. [PMID: 27368807 PMCID: PMC5502073 DOI: 10.1007/s12016-016-8574-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Occurrence of autoantibodies (autoAbs) is a hallmark of autoimmune diseases, and the analysis thereof is an essential part in the diagnosis of organ-specific autoimmune and systemic autoimmune rheumatic diseases (SARD), especially connective tissue diseases (CTDs). Due to the appearance of autoAb profiles in SARD patients and the complexity of the corresponding serological diagnosis, different diagnostic strategies have been suggested for appropriate autoAb testing. Thus, evolving assay techniques and the continuous discovery of novel autoantigens have greatly influenced the development of these strategies. Antinuclear antibody (ANA) analysis by indirect immunofluorescence (IIF) on tissue and later cellular substrates was one of the first tests introduced into clinical routine and is still an indispensable tool for CTD serology. Thus, screening for ANA by IIF is recommended to be followed by confirmatory testing of positive findings employing different assay techniques. Given the continuous growth in the demand for autoAb testing, IIF has been challenged as the standard method for ANA and other autoAb analyses due to lacking automation, standardization, modern data management, and human bias in IIF pattern interpretation. To address these limitations of autoAb testing, the CytoBead® technique has been introduced recently which enables automated interpretation of cell-based IIF and quantitative autoAb multiplexing by addressable microbead immunoassays in one reaction environment. Thus, autoAb screening and confirmatory testing can be combined for the first time. The present review discusses the history of autoAb assay techniques in this context and gives an overview and outlook of the recent progress in emerging technologies.
Collapse
Affiliation(s)
- Mandy Sowa
- GA Generic Assays GmbH, Dahlewitz, Berlin, Germany
| | - Rico Hiemann
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karsten Conrad
- Institute of Immunology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Dirk Roggenbuck
- GA Generic Assays GmbH, Dahlewitz, Berlin, Germany.
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.
| |
Collapse
|
18
|
Tumor heterogeneity determined with a γH2AX foci assay: A study in human head and neck squamous cell carcinoma (hHNSCC) models. Radiother Oncol 2017; 124:379-385. [PMID: 28739384 DOI: 10.1016/j.radonc.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to analyze the intra-tumoral heterogeneity of γH2AX foci in tumor specimens following ex vivo radiation to evaluate the potential of γH2AX foci as predictors for radiosensitivity. MATERIAL AND METHODS γH2AX foci were quantified in tumor specimens of 3hHNSCC tumor models with known differences in radiosensitivity after reoxygenation in culture medium (10h, 24h), single dose exposure (0Gy, 4Gy), and fixation 24h post-irradiation. Multiple, equally treated samples of the same tumor were analyzed for foci, normalized and fitted in a linear mixed-effects model. RESULTS The ex vivo reoxygenation time had no significant effect on γH2AX foci counts. A significant intra model heterogeneity could be shown for FaDu (p=0.033) but not for SKX (p=0.167) and UT-SCC-5 (p=0.082) tumors, respectively. All tumor models showed a significant intra-tumoral heterogeneity between specimens of the same tumor (p<0.01) or among microscopic fields of a particular tumor specimen (p<0.0001). CONCLUSION Similar results for ex vivo γH2AX foci between 10h and 24h reoxygenation time support the applicability of the assay in a clinical setting. The high intra-tumoral heterogeneity underlines the necessity of multiple analyzable samples per patient and therewith the need for an automated foci analysis.
Collapse
|
19
|
Danese E, Lippi G, Buonocore R, Benati M, Bovo C, Bonaguri C, Salvagno GL, Brocco G, Roggenbuck D, Montagnana M. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:272. [PMID: 28758098 DOI: 10.21037/atm.2017.04.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The use of mobile phones has been associated with an increased risk of developing certain type of cancer, especially in long term users. Therefore, this study was aimed to investigate the potential genotoxic effect of mobile phone radiofrequency exposure on human peripheral blood mononuclear cells in vitro. METHODS The study population consisted in 14 healthy volunteers. After collection of two whole blood samples, the former was placed in a plastic rack, 1 cm from the chassis of a commercial mobile phone (900 MHz carrier frequency), which was activated by a 30-min call. The second blood sample was instead maintained far from mobile phones or other RF sources. The influence of mobile phone RF on DNA integrity was assessed by analyzing γ-H2AX foci in lymphocytes using immunofluorescence staining kit on AKLIDES. RESULTS No measure of γ-H2AX foci was significantly influenced by mobile phone RF exposure, nor mobile phone exposure was associated with significant risk of genetic damages in vitro (odds ratio comprised between 0.27 and 1.00). CONCLUSIONS The results of this experimental study demonstrate that exposure of human lymphocytes to a conventional 900 MHz RF emitted by a commercial mobile phone for 30 min does not significantly impact DNA integrity.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Ruggero Buonocore
- Laboratory of Clinical Chemistry and Haematology, Academic Hospital of Parma, Parma, Italy
| | - Marco Benati
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Chiara Bovo
- Medical Direction, University Hospital of Verona, Verona, Italy
| | - Chiara Bonaguri
- Laboratory of Clinical Chemistry and Haematology, Academic Hospital of Parma, Parma, Italy
| | | | - Giorgio Brocco
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Dirk Roggenbuck
- Faculty of Natural Sciences, Brandenburg Technical University, Senftenberg, Germany and Medipan GmbH, Dahlewitz/Berlin, Germany
| | | |
Collapse
|
20
|
Fatahi M, Reddig A, Friebe B, Reinhold D, Speck O. MRI and Genetic Damage: An Update. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0216-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Danese E, Lippi G, Sanchis-Gomar F, Brocco G, Rizzo M, Banach M, Montagnana M. Physical Exercise and DNA Injury: Good or Evil? Adv Clin Chem 2017. [PMID: 28629589 DOI: 10.1016/bs.acc.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Regular, low-intensity physical activity is currently advocated for lowering the risk of developing many acute and especially chronic diseases. However, several lines of evidence attest that strenuous exercise may enhance inflammation and trigger the generation of free radical-mediated damage, thus overwhelming the undisputable benefits of regular, medium-intensity physical activity. Since reactive oxygen species are actively generated during high-intensity exercise, and these reactive compounds are known to impact DNA stability, we review here the current evidence about strenuous exercise and DNA injury. Despite the outcome of the various studies cannot be pooled due to considerable variation in design, sample population, outcome, and analytical techniques used to assess DNA damage, it seems reasonable to conclude that medium- to high-volume exercise triggers a certain amount of DNA injury, which appears to be transitory and directly proportional to exercise intensity. This damage, reasonably attributable to direct effect of free radicals on nucleic acids, is efficiently repaired in vivo within 24-72h. Therefore, physical exercise should not bear long-term consequences for athlete's health provided that an appropriate time of recovery between volumes of high-intensity exercise is set. Regular exertion, with a step-by-step increase of exercise load, also seems to be the most safe approach for eluding DNA instability.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | | | - Giorgio Brocco
- Research Institute of the Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | - Maciej Banach
- WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
22
|
Reddig A, Fatahi M, Roggenbuck D, Ricke J, Reinhold D, Speck O, Friebe B. Impact of in Vivo High-Field-Strength and Ultra-High-Field-Strength MR Imaging on DNA Double-Strand-Break Formation in Human Lymphocytes. Radiology 2016; 282:782-789. [PMID: 27689924 DOI: 10.1148/radiol.2016160794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the impact of different magnetic field strengths (1, 1.5, 3, and 7 T) and the effect of contrast agent on DNA double-strand-break (DSB) formation in patients undergoing magnetic resonance (MR) imaging. Materials and Methods This in vivo study was approved by the local ethics committee, and written informed consent was obtained from each patient. To analyze the level of DNA DSBs, peripheral blood mononuclear cells were isolated from blood samples drawn directly before, as well as 5 minutes and 30 minutes after MR imaging examination. After performing γH2AX immunofluorescence staining, DSBs were quantified with automated digital microscopy. MR group consisted of 43 patients (22 women, 21 men; mean age, 46.1 years; range, 20-77 years) and was further subdivided according to the applied field strength and administration of contrast agent. Additionally, 10 patients undergoing either unenhanced or contrast material-enhanced computed tomography (CT) served as positive control subjects. Statistical analysis was performed with Friedman test. Results Whereas DSBs in lymphocytes increased after CT exposure (before MR imaging: 0.14 foci per cell ± 0.05; 5 minutes after: 0.26 foci per cell ± 0.07; 30 minutes after: 0.24 foci per cell ± 0.07; P ≤ .05), no alterations were observed in patients examined with MR imaging (before MR imaging: 0.13 foci per cell ± 0.02; 5 minutes after: 0.12 foci per cell ± 0.02; 30 minutes after: 0.11 foci per cell ± 0.02; P > .05). Differentiated analysis of MR imaging subgroups again revealed no significant changes in γH2AX level. Conclusion Analysis of γH2AX foci showed no evidence of DSB induction after MR examination, independent of the applied field strength and administration of gadolinium-based contrast agent.
Collapse
Affiliation(s)
- Annika Reddig
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| | - Mahsa Fatahi
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| | - Dirk Roggenbuck
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| | - Jens Ricke
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| | - Dirk Reinhold
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| | - Oliver Speck
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| | - Björn Friebe
- From the Institute of Molecular and Clinical Immunology (A.R., D. Reinhold); Department of Biomedical Magnetic Resonance (M.F., O.S.); and Department of Radiology and Nuclear Medicine (J.R., B.F.), Otto von Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany; Medipan, Berlin, Germany (D. Roggenbuck); Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany (D. Roggenbuck); Leibniz Institute for Neurobiology, Magdeburg, Germany (O.S.); Center for Behavioral Brain Sciences, Magdeburg, Germany (O.S.); and German Center for Neurodegenerative Disease, Site Magdeburg, Magdeburg, Germany (O.S.)
| |
Collapse
|
23
|
Progress on Molecular Mechanism of Phosphorylation/Dephosphorylation and Detection Technology of γH2AX. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60952-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Sack U, Boldt A, Mallouk N, Gruber R, Krenn V, Berger-Depincé AE, Conrad K, Tarnok A, Lambert C, Reinhold D, Fricke S. Cellular analyses in the monitoring of autoimmune diseases. Autoimmun Rev 2016; 15:883-9. [PMID: 27392502 DOI: 10.1016/j.autrev.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Ulrich Sack
- Universitätsklinikum Leipzig, Department für Diagnostik, Institut für Klinische Immunologie, Johannisallee 30, 04103, Leipzig, Germany.
| | - Andreas Boldt
- Universitätsklinikum Leipzig, Department für Diagnostik, Institut für Klinische Immunologie, Johannisallee 30, 04103, Leipzig, Germany.
| | - Nora Mallouk
- URCIP, CHU Saint-Etienne, Hôpital Nord, 42055 Saint-Etienne Cedex 02, France.
| | - Rudolf Gruber
- Institut für Labormedizin, Mikrobiologie und Krankenhaushygiene, Krankenhaus Barmherzige Brüder Regensburg, Prüfeninger Straße 86, 93049, Regensburg, Germany.
| | - Veit Krenn
- Medizinisches Versorgungszentrum für Histologie, Zytologie und Molekulare Diagnostik Trier, Max-Planck-Str. 5, 54296, Trier, Germany.
| | | | - Karsten Conrad
- Institut für Immunologie, Medizinische Fakultät "Carl Gustav Carus" der Technischen Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Attila Tarnok
- Universitätsklinikum Leipzig, Department für Diagnostik, Institut für Klinische Immunologie, Johannisallee 30, 04103, Leipzig, Germany.
| | - Claude Lambert
- Immunology laboratory, Pole de Biologie-Pathologie, University Hospital. CNRS UMR5307 Labo Georges Friedel (LGF); 42055 Saint-Etienne Cedex 02, France.
| | - Dirk Reinhold
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Molekulare und Klinische Immunologie, Leipziger Straße 44, 39120, Magdeburg, Germany.
| | - Stephan Fricke
- Fraunhofer Institut für Zelltherapie und Immunologie, Perlickstraße 1, 04103, Leipzig, Germany.
| |
Collapse
|
25
|
Lippi G, Buonocore R, Tarperi C, Montagnana M, Festa L, Danese E, Benati M, Salvagno GL, Bonaguri C, Roggenbuck D, Schena F. DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise. Clin Chim Acta 2016; 460:146-51. [PMID: 27374303 DOI: 10.1016/j.cca.2016.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate DNA damage in response to increasing bulks of aerobic physical exercise. Fifteen adult and trained athletes performed four sequential trials with increasing running distance (5-, 10-, 21- and 42-km) in different periods of the year. The γ-H2AX foci parameters were analyzed before and 3h after the end of each trial. The values of all γ-H2AX foci parameters were enhanced after the end of each trial, with values gradually increasing from the 5- to the 42-km trial. Interestingly, a minor increase of γ-H2AX foci was still evident after 5- to 10-km running, but a much higher increase occurred when the running distance exceeded 21km. The generation of DNA injury was then magnified by running up to 42-km. The increase of each γ-H2AX foci parameter was then found to be associated with both running distance and average intensity. In multivariate linear regression analysis, the running distance was significantly associated with average intensity and post-run variation in the percentage of cells with γ-H2AX foci. We can hence conclude that aerobic exercise may generate an acute DNA damage in trained athletes, which is highly dependent upon running distance and average intensity.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Ruggero Buonocore
- Laboratory of Clinical Chemistry and Hematology, University Hospital of Parma, Italy
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Luca Festa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Marco Benati
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | | - Chiara Bonaguri
- Laboratory of Clinical Chemistry and Hematology, University Hospital of Parma, Italy
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty 2, Brandenburg Technical University, Senftenberg, Germany and Medipan GmbH, Dahlewitz/Berlin, Germany
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Center for Research in Mountain, Sport and Health (CeRISM), Rovereto, Italy
| |
Collapse
|
26
|
DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T Magnetic Resonance Imaging. Neuroimage 2016; 133:288-293. [DOI: 10.1016/j.neuroimage.2016.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
|
27
|
Rasche L, Heiserich L, Behrens JR, Lenz K, Pfuhl C, Wakonig K, Gieß RM, Freitag E, Eberle C, Wuerfel J, Dörr J, Bauer P, Bellmann-Strobl J, Paul F, Roggenbuck D, Ruprecht K. Analysis of Lymphocytic DNA Damage in Early Multiple Sclerosis by Automated Gamma-H2AX and 53BP1 Foci Detection: A Case Control Study. PLoS One 2016; 11:e0147968. [PMID: 26820970 PMCID: PMC4731473 DOI: 10.1371/journal.pone.0147968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
Background In response to DNA double-strand breaks, the histone protein H2AX becomes phosphorylated at its C-terminal serine 139 residue, referred to as γ-H2AX. Formation of γ-H2AX foci is associated with recruitment of p53-binding protein 1 (53BP1), a regulator of the cellular response to DNA double-strand breaks. γ-H2AX expression in peripheral blood mononuclear cells (PBMCs) was recently proposed as a diagnostic and disease activity marker for multiple sclerosis (MS). Objective To evaluate the significance of γ-H2AX and 53BP1 foci in PBMCs as diagnostic and disease activity markers in patients with clinically isolated syndrome (CIS) and early relapsing-remitting MS (RRMS) using automated γ-H2AX and 53BP1 foci detection. Methods Immunocytochemistry was performed on freshly isolated PBMCs of patients with CIS/early RRMS (n = 25) and healthy controls (n = 27) with γ-H2AX and 53BP1 specific antibodies. Nuclear γ-H2AX and 53BP1 foci were determined using a fully automated reading system, assessing the numbers of γ-H2AX and 53BP1 foci per total number of cells and the percentage of cells with foci. Patients underwent contrast enhanced 3 Tesla magnetic resonance imaging (MRI) and clinical examination including expanded disability status scale (EDSS) score. γ-H2AX and 53BP1 were also compared in previously frozen PBMCs of each 10 CIS/early RRMS patients with and without contrast enhancing lesions (CEL) and 10 healthy controls. Results The median (range) number of γ-H2AX (0.04 [0–0.5]) and 53BP1 (0.005 [0–0.2]) foci per cell in freshly isolated PBMCs across all study participants was low and similar to previously reported values of healthy individuals. For both, γ-H2AX and 53BP1, the cellular focus number as well as the percentage of positive cells did not differ between patients with CIS/RRMS and healthy controls. γ-H2AX and 53BP1 levels neither correlated with number nor volume of T2-weighted lesions on MRI, nor with the EDSS. Although γ-H2AX, but not 53BP1, levels were higher in previously frozen PBMCs of patients with than without CEL, γ-H2AX values of both groups overlapped and γ-H2AX did not correlate with the number or volume of CEL. Conclusion γ-H2AX and 53BP1 foci do not seem to be promising diagnostic or disease activity biomarkers in patients with early MS. Lymphocytic DNA double-strand breaks are unlikely to play a major role in the pathophysiology of MS.
Collapse
Affiliation(s)
- Ludwig Rasche
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Janina Ruth Behrens
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Lenz
- Department of Medical Biometrics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Catherina Pfuhl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Wakonig
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - René Markus Gieß
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erik Freitag
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- MIAC AG, Basel, Switzerland
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute of Neuroradiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jan Dörr
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dirk Roggenbuck
- Medipan GmbH, Berlin-Dahlewitz, Germany
- Faculty of Science, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Klemens Ruprecht
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
28
|
Ishihara H, Tanaka I, Yakumaru H, Tanaka M, Yokochi K, Fukutsu K, Tajima K, Nishimura M, Shimada Y, Akashi M. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells. JOURNAL OF RADIATION RESEARCH 2016; 57:25-34. [PMID: 26589759 PMCID: PMC4708920 DOI: 10.1093/jrr/rrv066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/18/2015] [Indexed: 05/06/2023]
Abstract
Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from (137)Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood.
Collapse
Affiliation(s)
- Hiroshi Ishihara
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Izumi Tanaka
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Haruko Yakumaru
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mika Tanaka
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuko Yokochi
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kumiko Fukutsu
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Tajima
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Akashi
- Board, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
29
|
Debelec-Butuner B, Bostancı A, Heiserich L, Eberle C, Ozcan F, Aslan M, Roggenbuck D, Korkmaz KS. Automated Cell-Based Quantitation of 8-OHdG Damage. Methods Mol Biol 2016; 1516:299-308. [PMID: 27044043 DOI: 10.1007/7651_2016_344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Detection of 8-OHdG-base damage has been a big challenge for decades, though different analytical methods are developed. The recent approaches that are used for quantitating either the total amount of base damage or the amount of base damage per cell from different sources of samples are not automated. We have developed a method for automated damage detection from a single cell and applied it to 8-OHdG quantitation.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Aykut Bostancı
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | | | | | - Filiz Ozcan
- Mass Spec. Laboratory, Department of Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Mass Spec. Laboratory, Department of Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Dirk Roggenbuck
- Medipan GmBH, Dahlewitz, Berlin, Germany.,Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Kemal Sami Korkmaz
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
30
|
Andrei AZ, Hall A, Smith AL, Bascuñana C, Malina A, Connor A, Altinel-Omeroglu G, Huang S, Pelletier J, Huntsman D, Gallinger S, Omeroglu A, Metrakos P, Zogopoulos G. Increased in vitro and in vivo sensitivity of BRCA2-associated pancreatic cancer to the poly(ADP-ribose) polymerase-1/2 inhibitor BMN 673. Cancer Lett 2015; 364:8-16. [DOI: 10.1016/j.canlet.2015.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/11/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
31
|
Sack U, Tárnok A. Clinical Cell Cycle Analysis Revisited. Cytometry A 2015. [PMID: 26211909 DOI: 10.1002/cyto.a.22721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ulrich Sack
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Attila Tárnok
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Department of Pediatric Cardiology, Heart Centre Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
33
|
Reddig A, Fatahi M, Friebe B, Guttek K, Hartig R, Godenschweger F, Roggenbuck D, Ricke J, Reinhold D, Speck O. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes. PLoS One 2015; 10:e0132702. [PMID: 26176601 PMCID: PMC4503586 DOI: 10.1371/journal.pone.0132702] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 01/25/2023] Open
Abstract
The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated.
Collapse
Affiliation(s)
- Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- * E-mail:
| | - Mahsa Fatahi
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn Friebe
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Frank Godenschweger
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Roggenbuck
- Medipan GmbH, Dahlewitz/Berlin, Germany
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jens Ricke
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Disease, Magdeburg, Germany
| |
Collapse
|
34
|
Leifert WR, Siddiqui SM. γH2AX is a biomarker of modulated cytostatic drug resistance. Cytometry A 2015; 87:692-5. [PMID: 25902732 DOI: 10.1002/cyto.a.22672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Ageing, Adelaide, South Australia, 5000, Australia
| | - Sabbir Mohammad Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Ageing, Adelaide, South Australia, 5000, Australia.,School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, 5064, Australia
| |
Collapse
|
35
|
Reddig A, Lorenz S, Hiemann R, Guttek K, Hartig R, Heiserich L, Eberle C, Peters V, Schierack P, Sack U, Roggenbuck D, Reinhold D. Assessment of modulated cytostatic drug resistance by automated γH2AX analysis. Cytometry A 2015; 87:724-32. [DOI: 10.1002/cyto.a.22667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | | | - Rico Hiemann
- Faculty of Natural Sciences; Brandenburg University of Technology Cottbus-Senftenberg; Senftenberg Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | | | | | | | - Peter Schierack
- Faculty of Natural Sciences; Brandenburg University of Technology Cottbus-Senftenberg; Senftenberg Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig; Leipzig Germany
| | - Dirk Roggenbuck
- Medipan GmbH; Dahlewitz/Berlin Germany
- Faculty of Natural Sciences; Brandenburg University of Technology Cottbus-Senftenberg; Senftenberg Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| |
Collapse
|
36
|
Distinct increased outliers among 136 rectal cancer patients assessed by γH2AX. Radiat Oncol 2015; 10:36. [PMID: 25889915 PMCID: PMC4330982 DOI: 10.1186/s13014-015-0344-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background In recent years attention has focused on γH2AX as a very sensitive double strand break indicator. It has been suggested that γH2AX might be able to predict individual radiosensitivity. Our aim was to study the induction and repair of DNA double strand breaks labelled by γH2AX in a large cohort. Methods In a prospective study lymphocytes of 136 rectal cancer (RC) patients and 59 healthy individuals were ex vivo irradiated (IR) and initial DNA damage was compared to remaining DNA damage after 2 Gy and 24 hours repair time and preexisting DNA damage in unirradiated lymphocytes. Lymphocytes were immunostained with anti-γH2AX antibodies and microscopic images with an extended depth of field were acquired. γH2AX foci counting was performed using a semi-automatic image analysis software. Results Distinct increased values of preexisting and remaining γH2AX foci in the group of RC patients were found compared to the healthy individuals. Additionally there are clear differences within the groups and there are outliers in about 12% of the RC patients after ex vivo IR. Conclusions The γH2AX assay has the capability to identify a group of outliers which are most probably patients with increased radiosensitivity having the highest risk of suffering radiotherapy-related late sequelae.
Collapse
|