1
|
Jiao Z, Pan M, Yousaf K, Doveiko D, Maclean M, Griffin D, Chen Y, Li DDU. Smartphone-based optical sectioning (SOS) microscopy with a telecentric design for fluorescence imaging. J Microsc 2024; 296:10-23. [PMID: 38808665 DOI: 10.1111/jmi.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
We propose a smartphone-based optical sectioning (SOS) microscope based on the HiLo technique, with a single smartphone replacing a high-cost illumination source and a camera sensor. We built our SOS with off-the-shelf optical, mechanical cage systems with 3D-printed adapters to seamlessly integrate the smartphone with the SOS main body. The liquid light guide can be integrated with the adapter, guiding the smartphone's LED light to the digital mirror device (DMD) with neglectable loss. We used an electrically tuneable lens (ETL) instead of a mechanical translation stage to realise low-cost axial scanning. The ETL was conjugated to the objective lens's back pupil plane (BPP) to construct a telecentric design by a 4f configuration to maintain the lateral magnification for different axial positions. SOS has a 571.5 µm telecentric scanning range and an 11.7 µm axial resolution. The broadband smartphone LED torch can effectively excite fluorescent polystyrene (PS) beads. We successfully used SOS for high-contrast fluorescent PS beads imaging with different wavelengths and optical sectioning imaging of multilayer fluorescent PS beads. To our knowledge, the proposed SOS is the first smartphone-based HiLo optical sectioning microscopy (£1965), which can save around £7035 compared with a traditional HiLo system (£9000). It is a powerful tool for biomedical research in resource-limited areas.
Collapse
Affiliation(s)
- Ziao Jiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Mingliang Pan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| | - Khadija Yousaf
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - Daniel Doveiko
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - Michelle Maclean
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
- Department of Electronic & Electrical Engineering, The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), University of Strathclyde, Glasgow, UK
| | - David Griffin
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - David Day Uei Li
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
2
|
Agbleke AA, Amitai A, Buenrostro JD, Chakrabarti A, Chu L, Hansen AS, Koenig KM, Labade AS, Liu S, Nozaki T, Ovchinnikov S, Seeber A, Shaban HA, Spille JH, Stephens AD, Su JH, Wadduwage D. Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. Mol Cell 2020; 79:881-901. [PMID: 32768408 PMCID: PMC7888594 DOI: 10.1016/j.molcel.2020.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.
Collapse
Affiliation(s)
| | - Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Aditi Chakrabarti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Lingluo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; JHDSF Program, Harvard University, Cambridge, MA 02138, USA
| | - Ajay S Labade
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sirui Liu
- FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sergey Ovchinnikov
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Andrew Seeber
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA.
| | - Haitham A Shaban
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA; Spectroscopy Department, Physics Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew D Stephens
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jun-Han Su
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dushan Wadduwage
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Wu Y. Research on feature point extraction and matching machine learning method based on light field imaging. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-3962-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Jin D, Sung Y, Lue N, Kim YH, So PTC, Yaqoob Z. Large population cell characterization using quantitative phase cytometer. Cytometry A 2017; 91:450-459. [PMID: 28444998 DOI: 10.1002/cyto.a.23106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
Abstract
A major challenge in cellular analysis is the phenotypic characterization of large cell populations within a short period of time. Among various parameters for cell characterization, the cell dry mass is often used to describe cell size but is difficult to be measured directly with traditional techniques. Here, we propose an interferometric approach based on line-focused beam illumination for high-content precision dry mass measurements of adherent cells in a non-invasive fashion-we call it quantitative phase cytometry (QPC). Besides dry mass, abundant cellular morphological features such as projected area, sphericity, and phase skewness can be readily extracted from the QPC interferometric data. To validate the utility of our technique, we demonstrate characterizing a large population of ∼104 HeLa cells. Our reported QPC system is envisioned as a promising quantitative tool for label-free characterization of a large cell count at single cell resolution. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Di Jin
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yongjin Sung
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,College of Engineering and Applied Sciences, University of Wisconsin, Milwaukee, Wisconsin, 53201
| | - Niyom Lue
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yang-Hyo Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
5
|
Kong L, Tang J, Cui M. Multicolor multiphoton in vivo imaging flow cytometry. OPTICS EXPRESS 2016; 24:6126-35. [PMID: 27136806 PMCID: PMC5025233 DOI: 10.1364/oe.24.006126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 05/20/2023]
Abstract
In vivo flow cytometry provides a non-invasive way of probing the biology of circulating cells during disease progression and studying cellular response to therapy. However, current methods provide little morphological information which potentially could be new biological marker for early disease diagnosis, and fail to reveal intercellular interactions. Here we report a multi-color, multiphoton in vivo imaging flow cytometry, to image circulating cells within the vasculature of scattering tissues at high spatiotemporal resolution. We apply it in imaging of cellular dynamics in bone marrow through the intact mouse skull, in situ deformability cytometry, distinguishing cellular clusters, and simultaneously monitoring multiple types of trafficking cells based on their morphologies and fluorescence emission colors.
Collapse
Affiliation(s)
- Lingjie Kong
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907,
USA
| | - Jianyong Tang
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907,
USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907,
USA
- Integrated Imaging Cluster, Purdue University, West Lafayette, IN 47907,
USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907,
USA
| |
Collapse
|
6
|
Zheng X, Lu Y, Zhao J, Zhang Y, Ren W, Liu D, Lu J, Piper JA, Leif RC, Liu X, Jin D. High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis. Anal Chem 2015; 88:1312-9. [DOI: 10.1021/acs.analchem.5b03767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xianlin Zheng
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yiqing Lu
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jiangbo Zhao
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yuhai Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Ren
- Institute
for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Deming Liu
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jie Lu
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - James A. Piper
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robert C. Leif
- Newport Instruments, 3345 Hopi
Place, San Diego, California 92117-3516, United States
| | - Xiaogang Liu
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Institute
of Materials
Research and Engineering, A*STAR (Agency for Science, Technology and
Research), 3 Research Link, Singapore 117602, Singapore
| | - Dayong Jin
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Institute
for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
7
|
Lockett SJ. Speeding up image cytometry. Cytometry A 2014; 87:99-100. [PMID: 25515602 DOI: 10.1002/cyto.a.22617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| |
Collapse
|