1
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
2
|
Briestenská K, Mikušová M, Tomčíková K, Kostolanský F, Varečková E. Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). Arch Microbiol 2021; 203:4737-4742. [PMID: 34184097 PMCID: PMC8360831 DOI: 10.1007/s00203-021-02458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
In vivo bioluminescence imaging (BLI) offers a unique opportunity to analyze ongoing bacterial infections qualitatively and quantitatively in intact animals over time, leading to a reduction in the number of animals needed for a study. Since accurate determination of the bacterial burden plays an essential role in microbiological research, the present study aimed to evaluate the ability to quantify bacteria by non-invasive BLI technique in comparison to standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). For this purpose, BALB/c mice were intranasally infected with 1 × 105 CFU of bioluminescent Streptococcus pneumoniae A66.1. At day 1 post-infection, the presence of S. pneumoniae in lungs was demonstrated by spread plate method and RT-qPCR, but not by in vivo BLI. However, on the second day p.i., the bioluminescent signal was already detectable, and the photon flux values positively correlated with CFU counts and RT-qPCR data within days 2–6. Though in vivo BLI is valuable research tool allowing the continuous monitoring and quantification of pneumococcal infection in living mice, it should be kept in mind that early in the infection, depending on the infective dose, the bioluminescent signal may be below the detection limit.
Collapse
Affiliation(s)
- Katarína Briestenská
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miriam Mikušová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Karolína Tomčíková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - František Kostolanský
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Varečková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
3
|
Petruzzi M, Della Vella F, Cassandro A, Mosca A, Di Comite M, Contaldo M, Grassi FR, Lauritano D. Dorsal tongue porphyrin autofluorescence and Candida saprophytism: A prospective observational study. PLoS One 2019; 14:e0223072. [PMID: 31557235 PMCID: PMC6762088 DOI: 10.1371/journal.pone.0223072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Aim To investigate the correlation between the dorsal tongue porphyrin autofluorescence, revealed using VELscope, and Candida saprophytism. Material and methods Consecutive patients underwent an autofluorescence examination by the VELscope device to establish the presence or absence of porphyrin fluorescence. A tongue swab was collected for the Candida cultural test. Sensitivity, specificity, accuracy, negative predictive value and positive predictive value were calculated considering the oral swab as the gold standard. The degree of agreement between the two tests was calculated using Cohen's K coefficient. Results One hundred twenty-six patients were enrolled. Porphyrin fluorescence method showed a sensitivity of 78%, specificity of 76% and an accuracy of 78%. Negative predictive value and positive predictive value were respectively 90% and 59%. The strength of agreement between the two methods resulted to be moderate (k = 0.551). Conclusions Off-label use of tongue autofluorescence examination to detect the presence of Candida species is characterized by a loss of porphyrin fluorescence. The high negative predictive value of porphyrin fluorescence loss suggests its use in preliminary selection of Candida carriers, in order to plan preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Massimo Petruzzi
- Interdisciplinary Department of Medicine, University "Aldo Moro" of Bari, Bari, Italy
| | - Fedora Della Vella
- Interdisciplinary Department of Medicine, University "Aldo Moro" of Bari, Bari, Italy
| | - Andrea Cassandro
- Interdisciplinary Department of Medicine, University "Aldo Moro" of Bari, Bari, Italy
| | - Adriana Mosca
- Interdisciplinary Department of Medicine, University "Aldo Moro" of Bari, Bari, Italy
| | - Mariasevera Di Comite
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Felice Roberto Grassi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Dorina Lauritano
- Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Chapuis AF, Ballou ER, MacCallum DM. A Bright Future for Fluorescence Imaging of Fungi in Living Hosts. J Fungi (Basel) 2019; 5:jof5020029. [PMID: 30987114 PMCID: PMC6616859 DOI: 10.3390/jof5020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional in vivo investigation of fungal infection and new antifungal therapies in mouse models is usually carried out using post mortem methodologies. However, biomedical imaging techniques focusing on non-invasive techniques using bioluminescent and fluorescent proteins have become valuable tools. These new techniques address ethical concerns as they allow reduction in the number of animals required to evaluate new antifungal therapies. They also allow better understanding of the growth and spread of the pathogen during infection. In this review, we concentrate on imaging technologies using different fungal reporter proteins. We discuss the advantages and limitations of these different reporters and compare the efficacy of bioluminescent and fluorescent proteins for fungal research.
Collapse
Affiliation(s)
- Ambre F Chapuis
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Donna M MacCallum
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
5
|
Monitoring of Fluconazole and Caspofungin Activity against In Vivo Candida glabrata Biofilms by Bioluminescence Imaging. Antimicrob Agents Chemother 2019; 63:AAC.01555-18. [PMID: 30420485 DOI: 10.1128/aac.01555-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Candida glabrata can attach to various medical implants and forms thick biofilms despite its inability to switch from yeast to hyphae. The current in vivo C. glabrata biofilm models only provide limited information about colonization and infection and usually require animal sacrifice. To gain real-time information from individual BALB/c mice, we developed a noninvasive imaging technique to visualize C. glabrata biofilms in catheter fragments that were subcutaneously implanted on the back of mice. Bioluminescent C. glabrata reporter strains (luc OPT 7/2/4 and luc OPT 8/1/4), free of auxotrophic markers, expressing a codon-optimized firefly luciferase were generated. A murine subcutaneous model was used to follow real-time in vivo biofilm formation in the presence and absence of fluconazole and caspofungin. The fungal load in biofilms was quantified by CFU counts and by bioluminescence imaging (BLI). C. glabrata biofilms formed within the first 24 h, as documented by the increased number of device-associated cells and elevated bioluminescent signal compared with adhesion at the time of implant. The in vivo model allowed monitoring of the antibiofilm activity of caspofungin against C. glabrata biofilms through bioluminescent imaging from day four after the initiation of treatment. Contrarily, signals emitted from biofilms implanted in fluconazole-treated mice were similar to the light emitted from control-treated mice. This study gives insights into the real-time development of C. glabrata biofilms under in vivo conditions. BLI proved to be a dynamic, noninvasive, and sensitive tool to monitor continuous biofilm formation and activity of antifungal agents against C. glabrata biofilms formed on abiotic surfaces in vivo.
Collapse
|
6
|
Dorsaz S, Coste AT, Sanglard D. Red-Shifted Firefly Luciferase Optimized for Candida albicans In vivo Bioluminescence Imaging. Front Microbiol 2017; 8:1478. [PMID: 28824601 PMCID: PMC5541039 DOI: 10.3389/fmicb.2017.01478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is a major fungal pathogen causing life-threatening diseases in immuno-compromised patients. The efficacy of current drugs to combat C. albicans infections is limited, as these infections have a 40–60% mortality rate. There is a real need for novel therapeutic approaches, but such advances require a detailed knowledge of C. albicans and its in vivo pathogenesis. Additionally, any novel antifungal drugs against C. albicans infections will need to be tested for their in vivo efficacy over time. Fungal pathogenesis and drug-mediated resolution studies can both be evaluated using non-invasive in vivo imaging technologies. In the work presented here, we used a codon-optimized firefly luciferase reporter system for detecting C. albicans in mice. We adapted the firefly luciferase in order to improve its maximum emission intensity in the red light range (600–700 nm) as well as to improve its thermostability in mice. All non-invasive in vivo imaging of experimental animals was performed with a multimodal imaging system able to detect luminescent reporters and capture both reflectance and X-ray images. The modified firefly luciferase expressed in C. albicans (Mut2) was found to significantly increase the sensitivity of bioluminescence imaging (BLI) in systemic infections as compared to unmodified luciferase (Mut0). The same modified bioluminescence reporter system was used in an oropharyngeal candidiasis model. In both animal models, fungal loads could be correlated to the intensity of emitted light. Antifungal treatment efficacies were also evaluated on the basis of BLI signal intensity. In conclusion, BLI with a red-shifted firefly luciferase was found to be a powerful tool for testing the fate of C. albicans in various mice infection models.
Collapse
Affiliation(s)
- Stephane Dorsaz
- Institute of Microbiology, University of LausanneLausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University of LausanneLausanne, Switzerland
| | | |
Collapse
|
7
|
Delarze E, Ischer F, Sanglard D, Coste AT. Adaptation of a Gaussia princeps Luciferase reporter system in Candida albicans for in vivo detection in the Galleria mellonella infection model. Virulence 2016; 6:684-93. [PMID: 26305489 DOI: 10.1080/21505594.2015.1081330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
For the past 10 years, mini-host models and in particular the greater wax moth Galleria mellonella have tended to become a surrogate for murine models of fungal infection mainly due to cost, ethical constraints and ease of use. Thus, methods to better assess the fungal pathogenesis in G. mellonella need to be developed. In this study, we implemented the detection of Candida albicans cells expressing the Gaussia princeps luciferase in its cell wall in infected larvae of G. mellonella. We demonstrated that detection and quantification of luminescence in the pulp of infected larvae is a reliable method to perform drug efficacy and C. albicans virulence assays as compared to fungal burden assay. Since the linearity of the bioluminescent signal, as compared to the CFU counts, has a correlation of R(2) = 0.62 and that this method is twice faster and less labor intensive than classical fungal burden assays, it could be applied to large scale studies. We next visualized and followed C. albicans infection in living G. mellonella larvae using a non-toxic and water-soluble coelenterazine formulation and a CCD camera that is commonly used for chemoluminescence signal detection. This work allowed us to follow for the first time C. albicans course of infection in G. mellonella during 4 days.
Collapse
Affiliation(s)
- Eric Delarze
- a Institute of Microbiology; University of Lausanne and University Hospital Center ; Lausanne , Switzerland
| | - Françoise Ischer
- a Institute of Microbiology; University of Lausanne and University Hospital Center ; Lausanne , Switzerland
| | - Dominique Sanglard
- a Institute of Microbiology; University of Lausanne and University Hospital Center ; Lausanne , Switzerland
| | - Alix T Coste
- a Institute of Microbiology; University of Lausanne and University Hospital Center ; Lausanne , Switzerland
| |
Collapse
|
8
|
Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice. mBio 2015; 6:e00724. [PMID: 26037125 PMCID: PMC4453014 DOI: 10.1128/mbio.00724-15] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Vaginal inflammation (vaginitis) is the most common disease caused by the human-pathogenic fungus Candida albicans. Secretory aspartyl proteinases (Sap) are major virulence traits of C. albicans that have been suggested to play a role in vaginitis. To dissect the mechanisms by which Sap play this role, Sap2, a dominantly expressed member of the Sap family and a putative constituent of an anti-Candida vaccine, was used. Injection of full-length Sap2 into the mouse vagina caused local neutrophil influx and accumulation of the inflammasome-dependent interleukin-1β (IL-1β) but not of inflammasome-independent tumor necrosis factor alpha. Sap2 could be replaced by other Sap, while no inflammation was induced by the vaccine antigen, the N-terminal-truncated, enzymatically inactive tSap2. Anti-Sap2 antibodies, in particular Fab from a human combinatorial antibody library, inhibited or abolished the inflammatory response, provided the antibodies were able, like the Sap inhibitor Pepstatin A, to inhibit Sap enzyme activity. The same antibodies and Pepstatin A also inhibited neutrophil influx and cytokine production stimulated by C. albicans intravaginal injection, and a mutant strain lacking SAP1, SAP2, and SAP3 was unable to cause vaginal inflammation. Sap2 induced expression of activated caspase-1 in murine and human vaginal epithelial cells. Caspase-1 inhibition downregulated IL-1β and IL-18 production by vaginal epithelial cells, and blockade of the IL-1β receptor strongly reduced neutrophil influx. Overall, the data suggest that some Sap, particularly Sap2, are proinflammatory proteins in vivo and can mediate the inflammasome-dependent, acute inflammatory response of vaginal epithelial cells to C. albicans. These findings support the notion that vaccine-induced or passively administered anti-Sap antibodies could contribute to control vaginitis. IMPORTANCE Candidal vaginitis is an acute inflammatory disease that affects many women of fertile age, with no definitive cure and, in its recurrent forms, causing true devastation of quality of life. Unraveling the fungal factors causing inflammation is important to be able to devise novel tools to fight the disease. In an experimental murine model, we have discovered that aspartyl proteinases, particularly Sap2, may cause the same inflammatory signs of vaginitis caused by the fungus and that anti-Sap antibodies and the protease inhibitor Pepstatin A almost equally inhibit Sap- and C. albicans-induced inflammation. Sap-induced vaginitis is an early event during vaginal infection, is uncoupled from fungal growth, and requires Sap and caspase-1 enzymatic activities to occur, suggesting that Sap or products of Sap activity activate an inflammasome sensor of epithelial cells. Our data support the notion that anti-Sap antibodies could help control the essence of candidal vaginitis, i.e., the inflammatory response.
Collapse
|
9
|
Affiliation(s)
- Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences; University of Nottingham; Nottingham United Kingdom
| |
Collapse
|