1
|
Hu J, Yan J, Chen Y, Li X, Yang L, Di H, Zhang H, Shi Y, Zhao J, Shi Y, Xu Y, Ren X, Wang Z. ESCO2 promotes hypopharyngeal carcinoma progression in a STAT1-dependent manner. BMC Cancer 2023; 23:1114. [PMID: 37968576 PMCID: PMC10647066 DOI: 10.1186/s12885-023-11527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) is involved in the development of multiple malignancies. However, its role in hypopharyngeal carcinoma (HPC) progression remains uncharacterized. METHODS This study employed bioinformatics to determine the ESCO2 expression in head and neck squamous cell carcinoma (HNSC) and normal tissues. In vitro cell proliferation, migration, apoptosis, and/or cell cycle distribution assays were used to determine the function of ESCO2 and its relationship with STAT1. Xenograft models were established in nude mice to determine ESCO2 in HPC growth in vivo. Co-immunoprecipitation/mass spectrometry (Co-IP/MS) was conducted to identify the potential ESCO2 binding partners. RESULTS We found that ESCO2 expression was elevated in HNSC tissues, and ESCO2 depletion suppressed tumor cell migration in vitro and inhibited tumor growth in vitro and in vivo. Co-IP/MS and immunoblotting assays revealed the interaction between ESCO2 and STAT1 in HPC cells. STAT1-overexpression compromised ESCO2-mediated suppressive effects on HPC cell proliferation, viability, and migration. CONCLUSIONS These findings suggest that ESCO2 is crucial in promoting HPC malignant progression through the STAT1 pathway and provides novel therapeutic targets for HPC treatment.
Collapse
Affiliation(s)
- Juan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Yan
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yijie Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohui Li
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liu Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiyu Di
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huihui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yewen Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjie Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanxia Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinglong Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyong Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenghui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of Maxillofacial Surgery, Affiliated Stomatological Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Jian X, Guo X, Cai Z, Wei L, Wang L, Xing XH, Zhang C. Single-cell microliter-droplet screening system (MISS Cell): An integrated platform for automated high-throughput microbial monoclonal cultivation and picking. Biotechnol Bioeng 2023; 120:778-792. [PMID: 36477904 DOI: 10.1002/bit.28300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Solid plates have been used for microbial monoclonal isolation, cultivation, and colony picking since 1881. However, the process is labor- and resource-intensive for high-throughput requirements. Currently, several instruments have been integrated for automated and high-throughput picking, but complicated and expensive. To address these issues, we report a novel integrated platform, the single-cell microliter-droplet screening system (MISS Cell), for automated, high-throughput microbial monoclonal colony cultivation and picking. We verified the monoclonality of droplet cultures in the MISS Cell and characterized culture performance. Compared with solid plates, the MISS Cell generated a larger number of monoclonal colonies with higher initial growth rates using fewer resources. Finally, we established a workflow for automated high-throughput screening of Corynebacterium glutamicum using the MISS Cell and identified high glutamate-producing strains. The MISS Cell can serve as a universal platform to efficiently produce monoclonal colonies in high-throughput applications, overcoming the limitations of solid plates to promote rapid development in biotechnology.
Collapse
Affiliation(s)
- Xingjin Jian
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Xiaojie Guo
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Zhengshuo Cai
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Longfeng Wei
- College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Wang Y, Chan LLY, Grimaud M, Fayed A, Zhu Q, Marasco WA. High-Throughput Image Cytometry Detection Method for CAR-T Transduction, Cell Proliferation, and Cytotoxicity Assays. Cytometry A 2020; 99:689-697. [PMID: 33191639 DOI: 10.1002/cyto.a.24267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has drawn much attention due to its recent clinical success in B-cell malignancies. In general, the CAR-T cell discovery process consists of CAR identification, T-cell activation, transduction, and expansion, as well as assessment of CAR-T cytotoxicity. The current evaluation methods for the CAR-T discovery process can be time-consuming, low-throughput and requires the preparation of multiple sacrificial samples in order to produce kinetic data. In this study, we employed the use of a plate-based image cytometer to monitor anti-CAIX (carbonic anhydrase IX) G36 CAR-T generation and assess its cytotoxic potency of direct and selective killing against CAIX+ SKRC-59 human renal cell carcinoma cells. The transduction efficiency and cytotoxicity results were analyzed using image cytometry and compared directly to flow cytometry and Chromium 51 (51 Cr) release assays, showing that image cytometry was comparable against these conventional methods. Image cytometry method streamlines the assays required during the CAR-T cell discovery process by analyzing a plate of T cells from CAR-T generation to in vitro functional assays with minimum disruption. The proposed method can reduce assay time and uses less cell samples by imaging and analyze the same plate over time without the need to sacrifice any cells. The ability to monitor kinetic data can allow additional insights into the behavior and interaction between CAR-T and target tumor cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC., Lawrence, Massachusetts, 01843, USA
| | - Marion Grimaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Atef Fayed
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Magnotti EL, Chan LLY, Zhu Q, Marasco WA. A high-throughput chemotaxis detection method for CCR4 + T cell migration inhibition using image cytometry. J Immunol Methods 2020; 479:112747. [PMID: 31958449 DOI: 10.1016/j.jim.2020.112747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
Chemotaxis is an important aspect of immune cell behavior within the tumor microenvironment (TME). One prominent example of chemotaxis within the TME is the migration of regulatory T cells (Tregs) in response to the chemokine ligands CCL17 and CCL22. Tregs within the TME cause the suppression of anti-tumor immunity and inhibition of the effect of immunotherapeutic treatments. Therefore, the ability to screen for therapeutic antibodies that can inhibit or stimulate the chemotaxis of various immune cell types is crucial. Traditionally, chemotaxis is studied by determining the number of cells in the bottom reservoir of a Transwell microplate using flow cytometry; however, this method is time-consuming and thus not appropriate for high-throughput screening purposes. The Celigo Image Cytometer has been employed to perform high-throughput cell-based assays and was used to develop a new detection method for chemotaxis measurement. The image-based detection method was developed using chemokine ligands CCL17 and CCL22 to induce the migration of CCR4+ T cells and directly count them on the bottom of the Transwell plates. Finally, the method was applied to measure the inhibitory effects of commercially available anti-CCL17 and anti-CCL22 antibodies, which caused a dose-dependent decrease in the number of migrated T cells. The proposed image cytometry method allowed screening of multiple antibodies at various concentrations, simultaneously, which can improve the efficiency for discovering potential antibody candidates that can induce or inhibit recruitment of immune cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Elizabeth L Magnotti
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States.
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| |
Collapse
|
5
|
Sack U, Bitar M. An Eloquent Proof for a Common Challenge. Cytometry A 2019; 97:168-170. [DOI: 10.1002/cyto.a.23958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Ulrich Sack
- Institute of Clinical Immunology, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Michael Bitar
- Institute of Clinical Immunology, Medical FacultyUniversity of Leipzig Leipzig Germany
| |
Collapse
|
6
|
Cosma A. The Nightmare of a Single Cell: Being a Doublet. Cytometry A 2019; 97:768-771. [DOI: 10.1002/cyto.a.23929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio Cosma
- Quantitative Biology Unit, National Cytometry PlatformLuxembourg Institute of Health L‐4354 Esch‐sur‐Alzette Luxembourg
| |
Collapse
|