1
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aya A Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
2
|
Yang CZ, Guo W, Wang YF, Hu LH, Wang J, Luo JM, Yao XH, Liu S, Tao LT, Sun LL, Lin LZ. Reduction in gefitinib resistance mediated by Yi-Fei San-Jie pill in non-small cell lung cancer through regulation of tyrosine metabolism, cell cycle, and the MET/EGFR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116566. [PMID: 37169317 DOI: 10.1016/j.jep.2023.116566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/16/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal prescription Yi-Fei San-Jie pill (YFSJ) has been used for adjuvant treatment in patients with lung cancer for a long time. AIM OF THE STUDY Reports have indicated that the combination of gefitinib (Gef) with YFSJ inhibits the proliferation of EGFR-TKI-resistant cell lines by enhancing cellular apoptosis and autophagy in non-small cell lung cancer (NSCLC). However, the molecular mechanisms underlying the effect of YFSJ on EGFR-TKI resistance and related metabolic pathways remain to be explored. MATERIALS AND METHODS In our report, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), metabolomics, network pharmacology, bioinformatics, and biological analysis methods were used to investigate the mechanism. RESULTS The UPLC-MS/MS data identified 42 active compounds of YFSJ extracts. YFSJ extracts can enhance the antitumor efficacy of Gef without hepatic and renal toxicity in vivo. The analysis of the metabolomics pathway enrichment revealed that YFSJ mainly affected the tyrosine metabolism pathway in rat models. Moreover, YFSJ has been shown to reverse Gef resistance and improve the effects of Gef on the cellular viability, migration capacity, and cell cycle arrest of NSCLC cell lines with EGFR mutations. The results of network pharmacology and molecular docking analyses revealed that tyrosine metabolism-related active compounds of YFSJ affect EGFR-TKIs resistance in NSCLC by targeting cell cycle and the MET/EGFR signaling pathway; these findings were validated by western blotting and immunohistochemistry. CONCLUSIONS YFSJ inhibits NSCLC by inducing cell cycle arrest in the G1/S phase to suppress tumor growth, cell viability, and cell migration through synergistic effects with Gef via the tyrosine metabolic pathway and the EGFR/MET signaling pathway. To summarize, the findings of the current study indicate that YFSJ is a prospective complementary treatment for Gef-resistant NSCLC.
Collapse
Affiliation(s)
- Cai-Zhi Yang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yi-Fan Wang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lei-Hao Hu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Jia-Min Luo
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xiao-Hui Yao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shan Liu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Ting Tao
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
3
|
Hu L, Luo J, Wen G, Sun L, Liu W, Hu H, Li J, Wang L, Su W, Lin L. Identification of the active compounds in the Yi-Fei-San-Jie formula using a comprehensive strategy based on cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology techniques. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154843. [PMID: 37149966 DOI: 10.1016/j.phymed.2023.154843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chinese herbal formulae has multiple active constituents and targets, and the good clinical response is encouraging more scientists to explore the bio-active ingredients in such complex systems. Yi-Fei-San-Jie formula (YFSJF) is commonly used to treat patients with lung cancer in South China; however, its bio-active ingredients remain unknown. PURPOSE We investigated the bio-active ingredients of the YFSJF using a novel comprehensive strategy. METHODS A549 cell extraction coupled with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was used for the screening of potential bio-active ingredients. Network pharmacology approach and molecular dynamics simulation were performed for the screening of targets. Surface plasmon resonance (SPR) assay and molecular biology techniques were used to verify the targets. RESULTS Nine A549 cell membrane-binding compounds were identified through cell extraction/UPLC-MS/MS. Five compounds, namely ginsenoside Ro, ginsenoside Rb1, ginsenoside Rc, peimisine, and peimine were cytotoxic to A549 cells, and they were considered the bio-active ingredients of the YFSJF in vitro. Network pharmacology analysis revealed that TGFBR2 is the key target and the TGFβ pathway is the key pathway targeted by YFSJF in non-small cell lung cancer. Peimisine showed an affinity to TGFBR2 using molecular docking and dynamic stimulation, which was confirmed using surface plasmon resonance spectroscopy. The molecular biology-based analysis further confirmed that peimisine targets TGFBR2 and can reverse A549 epithelial-mesenchymal transition by inhibiting the TGFβ pathway. CONCLUSION Taken together, cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology-based analysis comprise a feasible strategy to explore active ingredients in YFSJF.
Collapse
Affiliation(s)
- Leihao Hu
- School of the First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Jiamin Luo
- School of the First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guiqing Wen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lingling Sun
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Wei Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hao Hu
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Jing Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| | - Lisheng Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China.
| |
Collapse
|
4
|
Song X, Cao L, Ni B, Wang J, Qin X, Sun X, Xu B, Wang X, Li J. Challenges of EGFR-TKIs in NSCLC and the potential role of herbs and active compounds: From mechanism to clinical practice. Front Pharmacol 2023; 14:1090500. [PMID: 37089959 PMCID: PMC10120859 DOI: 10.3389/fphar.2023.1090500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are the most common oncogenic driver in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are widely used in the treatment of lung cancer, especially in the first-line treatment of advanced NSCLC, and EGFR-TKIs monotherapy has achieved better efficacy and tolerability compared with standard chemotherapy. However, acquired resistance to EGFR-TKIs and associated adverse events pose a significant obstacle to targeted lung cancer therapy. Therefore, there is an urgent need to seek effective interventions to overcome these limitations. Natural medicines have shown potential therapeutic advantages in reversing acquired resistance to EGFR-TKIs and reducing adverse events, bringing new options and directions for EGFR-TKIs combination therapy. In this paper, we systematically demonstrated the resistance mechanism of EGFR-TKIs, the clinical strategy of each generation of EGFR-TKIs in the synergistic treatment of NSCLC, the treatment-related adverse events of EGFR-TKIs, and the potential role of traditional Chinese medicine in overcoming the resistance and adverse reactions of EGFR-TKIs. Herbs and active compounds have the potential to act synergistically through multiple pathways and multiple mechanisms of overall regulation, combined with targeted therapy, and are expected to be an innovative model for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaotong Song
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Department of Respiratory, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Xiaoyan Qin
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Lin J, Sun L, Chen H, Chen W, Zhang Z, Cao Y, Lin L. Chinese and Western Integrative Medicine for Stage IIIb-IVb Non-Small Cell Lung Cancer: Design and Rationale of a Multi-center, Prospective Registry (NSCLC-Chinese and Western Integrative Medicine cohort). Integr Cancer Ther 2023; 22:15347354231185109. [PMID: 37493017 PMCID: PMC10387678 DOI: 10.1177/15347354231185109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION This planned multicenter observational study will evaluate the overall survival of those undergoing integrated Chinese and Western medicine for stage IIIb-IVb non-small cell lung cancer and analyze the factors related to the prognosis. METHOD AND ANALYSIS The prospective cohort will enroll patients with stage IIIb-IVb NSCLC from March 1, 2019, to December 31, 2025, and follow them for 5 years. We plan to collect data on the patients' demographics, treatment, overall survival, and factors related to the prognosis. ETHICS AND DISSEMINATION The institutional review board and ethics committee reviewed the study protocol. All patients will provide informed consent before enrollment.Trial registration number: ChiCTR1900021430.
Collapse
Affiliation(s)
- Jietao Lin
- Department of Oncology, Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Center of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lingling Sun
- Center of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanrui Chen
- Center of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenmin Chen
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zexin Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Cao
- Center of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lizhu Lin
- Center of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chen W, Lin J, Yang T, xin Zhang Z, Tao L, Xiao Z, Chen H, Qi X, Sun L, Cao Y, Lin L. Yifei Sanjie Formula or Placebo With Anlotinib as Second-Line or Above Treatment for Metastatic Non-Small-Cell Lung Cancer: Study Protocol for a Double-Blind, Placebo-Controlled Randomized Pilot Study. Integr Cancer Ther 2023; 22:15347354221151147. [PMID: 36710490 PMCID: PMC9893062 DOI: 10.1177/15347354221151147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/06/2022] [Accepted: 12/30/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Anlotinib is used as a third-line treatment for advanced non-small-cell lung cancer (NSCLC), but has limited clinical benefits and several side effects, such as diarrhea and acneiform skin rash. Traditional Chinese Medicine (TCM) is commonly used to treat cancers in China. Chinese herbal medicines may have the potential as adjuvant therapies to reduce toxicity and improve the efficacy of treatments for NSCLC. Given the positive outcomes of basic research, we plan to evaluate whether the addition of the Chinese herbal medicine Yifei Sanjie formula (YFSJF) to anlotinib can improve the progression-free survival (PFS) of advanced NSCLC patients. METHODS A multicenter, randomized, double-blind, placebo-controlled parallel-group controlled pilot trial will be performed. Forty eligible patients will be randomized in a ratio of 1:1 to the intervention (YFSJF + anlotinib) and control (placebo + anlotinib) groups. Participants will be advised to take 12 mg/day of anlotinib on days 1 to 14 of each 21-day cycle. YFSJF or placebo will be administered (15 g twice daily) during each cycle until progression of disease (PD). The primary outcome will be progression-free survival (PFS), and the secondary outcomes will be overall survival (OS), the objective response rate (ORR), and patient-reported outcomes (PRO). Tumors will be assessed based on RECIST v. 1.1 after every 2 cycles of treatment. The M. D. Anderson Symptom Inventory-Lung Cancer (MDASI-LC) will be used to evaluate PRO at baseline and weekly thereafter until PD. DISCUSSION This will be the first trial to evaluate the effectiveness and safety of TCM combined with anlotinib for the treatment of NSCLC. The results of this randomized controlled trial will fill a gap in the research by showing whether YFSJF combined with anlotinib can improve PFS in NSCLC patients. TRIAL REGISTRATION The study was registered on June 8th, 2021 on Chinese Clinical Registry; registration number ChiCTR2100047143. (https://www.chictr.org.cn/index.aspx). ETHICS AND DISSEMINATION The Ethics Committee of the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine approved the study protocol (approval no.: K2020151, 2021/08/19). The study will also be supervised and managed by the Ethics Committee.
Collapse
Affiliation(s)
- Wenmin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jietao Lin
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Ting Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ze xin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanting Tao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwei Xiao
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Hanrui Chen
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Xiangjun Qi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Yang Cao
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Lizhu Lin
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
7
|
Wu Y, Pi D, Zhou S, Wang W, Ye H, Yi Z, Chen Y, Ouyang M. Yiqi Chutan Formula Reverses Cisplatin-Induced Apoptosis and Ferroptosis of Skeletal Muscle by Alleviating Oxidative Stress. Integr Cancer Ther 2023; 22:15347354231172117. [PMID: 37132527 PMCID: PMC10161340 DOI: 10.1177/15347354231172117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Cisplatin is a widely used anticancer drug in clinic, but it has a damaging effect on skeletal muscle cells. Clinical observation showed that Yiqi Chutan formula (YCF) had a alleviating effect on cisplatin toxicity. METHODS In vitro cell model and in vivo animal model were used to observe the damage effect of cisplatin on skeletal muscle cells and verify that YCF reversed cisplatin induced skeletal muscle damage. The levels of oxidative stress, apoptosis and ferroptosis were measured in each group. RESULTS Both in vitro and in vivo studies have confirmed that cisplatin increases the level of oxidative stress in skeletal muscle cells, thus inducing cell apoptosis and ferroptosis. YCF treatment can effectively reverse cisplatin induced oxidative stress in skeletal muscle cells, thereby alleviating cell apoptosis and ferroptosis, and ultimately protecting skeletal muscle. CONCLUSIONS YCF reversed cisplatin-induced apoptosis and ferroptosis of skeletal muscle by alleviating oxidative stress.
Collapse
Affiliation(s)
- Yingchao Wu
- Jinan University, Guangzhou, Guangdong, China
| | - Dajin Pi
- Jinan University, Guangzhou, Guangdong, China
| | - Shuyao Zhou
- Guangdong Hanchao Traditional Chinese Medicine Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Wuhong Wang
- Jinan University, Guangzhou, Guangdong, China
| | - Huan Ye
- Jinan University, Guangzhou, Guangdong, China
| | - Zhongjia Yi
- Jinan University, Guangzhou, Guangdong, China
| | - Yiliu Chen
- Jinan University, Guangzhou, Guangdong, China
| | | |
Collapse
|
8
|
Dai C, Ma Z, Si J, An G, Zhang W, Li S, Ma Y. Hsa_circ_0007312 Promotes Third-Generation Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance through Pyroptosis and Apoptosis via the MiR-764/MAPK1 Axis in Lung Adenocarcinoma Cells. J Cancer 2022; 13:2798-2809. [PMID: 35812182 PMCID: PMC9254875 DOI: 10.7150/jca.72066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purposes: Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) used for patients with gefitinib (first-generation EGFR-TKI) resistance, but osimertinib resistance inevitably occurs. Therefore, it is necessary to explore the mechanisms of osimertinib resistance. Materials and Methods: We performed quantitative real-time polymerase chain reaction to detect hsa_circ_0007312 (circ7312), miR-764, and MAPK1 expressions in tissues and cells. Western blotting was used to detect protein levels in cells. Cell Counting Kit-8, apoptotic, and Transwell assays were used to explore biological functions. Luciferase assays were used to identify the interactions between circ7312 and miR-764, MAPK1 and miR-764. A xenograft experiment was performed to clarify the role of circ7312 in vivo. Public datasets were used to identify the relation between circ7312 expression and the cell half maximal inhibitory concentration value of osimertinib in 41 lung adenocarcinoma cell lines. The Student t-test, Kaplan-Meier analysis, and Pearson correlation analysis were used in data analysis. Results: We found that circ7312 knockdown increased miR-764 expression and decreased MAPK1 expression, and circ7312 regulated MAPK1 by sponging miR-764. In addition, high circ7312 expression has significant positive correlation with osimertinib IC50 values, circ7312 knockdown decreased the cell half maximal inhibitory concentration value of osimertinib and increased pyroptosis and apoptosis by sponging the miR-764/MAPK1 axis. We also found that circ7312 and MAPK1 were highly expressed in tumor tissues and related to poor prognosis. Xenograft experiments revealed that circ7312 knockdown decreased osimertinib resistance in vivo. Conclusion: We demonstrated that the inhibition of circ7312 decreased osimertinib resistance by promoting pyroptosis and apoptosis via the miR-764/MAPK1 axis, providing a novel target for osimertinib resistance therapy.
Collapse
Affiliation(s)
- Chenyue Dai
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zeming Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiahui Si
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Guo An
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenlong Zhang
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
9
|
Yang H, Guo Q, Wu J, Zhong L, Sun L, Liu W, Wang J, Lin L. Deciphering the Effects and Mechanisms of Yi-Fei-San-Jie-pill on Non-Small Cell Lung Cancer With Integrating Network Target Analysis and Experimental Validation. Front Pharmacol 2022; 13:851554. [PMID: 35645820 PMCID: PMC9130494 DOI: 10.3389/fphar.2022.851554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases, calls for better therapy. Yi-Fei-San-Jie-pill (YFSJ), a well-applicated traditional Chinese medicine formula, was reported to be effective in the treatment of NSCLC. However, its anti-tumor mechanism still needs to be fully elucidated. Herein, a reliable preclinical orthotopic but not subcutaneous model of NSCLC in mice was established to evaluate the anti-cancer properties and further validate the mechanisms of YFSJ. A bioinformatic analysis was executed to identify the potential targets and key pathways of YFSJ on NSCLC. In detail, the anti-tumor effect of YFSJ and the autophagy inhibitor 3-MA was evaluated according to the tumor fluorescence value and comparison of different groups' survival times. As a result, YFSJ markedly decreased tumor size and prolonged survival time in contrast with those in the orthotopic model group (p < 0.05), and it also significantly regulated the protein expression levels of apoptosis- and autophagy-related proteins. In conclusion, this study provides convincing evidence that YFSJ could inhibit the growth of tumors and prolong the survival time of tumor-bearing mice based on the NSCLC orthotopic model, and its anti-tumor effect was closely associated with the promotion of apoptosis and interference of autophagy coupled with regulation of immune infiltration.
Collapse
Affiliation(s)
- Hongxing Yang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianbin Wu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Zhong
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Yan JN, Zhang HY, Li JR, Chen Y, Jiang YC, Shen JB, Ke KF, Gu XS. Schwann cells differentiated from skin-derived precursors provide neuroprotection via autophagy inhibition in a cellular model of Parkinson's disease. Neural Regen Res 2021; 17:1357-1363. [PMID: 34782582 PMCID: PMC8643066 DOI: 10.4103/1673-5374.327353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autophagy has been shown to play an important role in Parkinson’s disease. We hypothesized that skin-derived precursor cells exhibit neuroprotective effects in Parkinson’s disease through affecting autophagy. In this study, 6-hydroxydopamine-damaged SH-SY5Y cells were pretreated with a culture medium containing skin-derived precursors differentiated into Schwann cells (SKP-SCs). The results showed that the SKP-SC culture medium remarkably enhanced the activity of SH-SY5Y cells damaged by 6-hydroxydopamine, reduced excessive autophagy, increased tyrosine hydroxylase expression, reduced α-synuclein expression, reduced the autophagosome number, and activated the PI3K/AKT/mTOR pathway. Autophagy activator rapamycin inhibited the effects of SKP-SCs, and autophagy inhibitor 3-methyladenine had the opposite effect. These findings confirm that SKP-SCs modulate the PI3K/AKT/mTOR pathway to inhibit autophagy, thereby exhibiting a neuroprotective effect in a cellular model of Parkinson’s disease. This study was approved by the Animal Ethics Committee of Laboratory Animal Center of Nantong University (approval No. S20181009-205) on October 9, 2018.
Collapse
Affiliation(s)
- Jia-Nan Yan
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Ying Zhang
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jun-Rui Li
- Department of Clinical Medicine, The First Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong; Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Afflicted Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yong-Cheng Jiang
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jia-Bing Shen
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kai-Fu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Su Gu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
Sack U, Tarnok A, Preijers F, Köhl U, Na IK. Editorial: Modulation of Human Immune Parameters by Anticancer Therapies. Front Immunol 2020; 11:621556. [PMID: 33343586 PMCID: PMC7738630 DOI: 10.3389/fimmu.2020.621556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ulrich Sack
- Medical Faculty, Institute of Clinical Immunology, Leipzig University, Leipzig, Germany
| | - Attila Tarnok
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department Precision Instruments, Tsinghua University, Beijing, China
| | - Frank Preijers
- Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Ulrike Köhl
- Medical Faculty, Institute of Clinical Immunology, Leipzig University, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Il-Kang Na
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Heidelberg, Germany
| |
Collapse
|
12
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Li F, Cui H, Jin X, Gong X, Wang W, Wang J. Triptolide inhibits epithelial‑mesenchymal transition and induces apoptosis in gefitinib‑resistant lung cancer cells. Oncol Rep 2020; 43:1569-1579. [PMID: 32323848 PMCID: PMC7107945 DOI: 10.3892/or.2020.7542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
The epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib, is used widely to treat non-small cell lung cancer (NSCLC) with EGFR-activating mutations. Unfortunately, the acquired drug resistance promoted by epithelial-mesenchymal transition (EMT) markedly limits the clinical effects and remains a major barrier to a cure. Our previous isobaric tags for relative and absolute quantitation-based proteomics analysis revealed that the E-cadherin protein level was markedly upregulated by triptolide (TP). The present study aimed to determine whether TP reverses the gefitinib resistance of human lung cancer cells by regulating EMT. It was revealed that TP combined with gefitinib synergistically inhibited the migration and invasion of lung adenocarcinoma cell line A549; the combination treatment had a significantly better outcome than that of TP and gefitinib alone. Moreover, TP effectively increased the sensitivity of drug resistant A549 cells to gefitinib by upregulating E-cadherin protein expression and downregulating the MMP9, SNAIL, and vimentin expression levels. The dysregulated E-cadherin expression of gefitinib-sensitive cells induced gefitinib resistance, which could be overcome by TP. Finally, TP combined with gefitinib significantly inhibited the growth of xenograft tumors induced using gefitinib-resistant A549 cells, which was associated with EMT reversal and E-cadherin signaling activation in vivo. The present results indicated that the combination of TP and TKIs may be a promising therapeutic strategy to treat patients with NSCLCs harboring EGFR mutations.
Collapse
Affiliation(s)
- Fangqiong Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Huaizhong Cui
- Department of Clinical Laboratory, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoting Gong
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
14
|
Su X, Wei X. Cytometry and Prevalent Cancers in Asia. Cytometry A 2020; 97:11-14. [PMID: 31918450 DOI: 10.1002/cyto.a.23959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Xuantao Su
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing, 100081, China
| |
Collapse
|