1
|
Zhao H, Luan X, Wang Y, Ye Y, Yan F, Li X, Li Y, Li M, Zhang L, Zhao Y, Huang C, Luo Y. Dynamic Detection of Specific Membrane Capacitance and Cytoplasmic Resistance of Neutrophils After Ischemic Stroke. Aging Dis 2023:AD.2023.0127. [PMID: 37163431 PMCID: PMC10389826 DOI: 10.14336/ad.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/27/2023] [Indexed: 05/12/2023] Open
Abstract
Peripheral blood is the most readily available resource for stroke patient prognosis, but there is a lack of methods to detect dynamic changes of neutrophils in peripheral blood that can be used in the clinic. Herein, we developed a procedure to characterize dynamic changes of neutrophils based on their electrical properties in rats after transient middle cerebral artery occlusion (MCAO). We characterized the specific membrane capacitance (Csm) and cytoplasmic resistance (σcyto) of approximately 27,600 neutrophils from MCAO rats 24 h after ischemia/reperfusion. We found that the Csm and σcyto of neutrophils in the MCAO group were significantly higher compared to the sham group. Furthermore, we observed a monotonically upward shift in neutrophil Csm in the MCAO group during the four 5-minute test cycles. Our findings suggest that the dynamic changes of cellular electrical properties could reflect neutrophil activity and serve as a prognostic indicator for ischemic stroke in the clinical setting.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xiaofeng Luan
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Wang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yifei Ye
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuang Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingxiao Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Lingqian Zhang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Chengjun Huang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
2
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
3
|
Wang M, Tan H, Li Y, Chen X, Chen D, Wang J, Chen J. Toward five-part differential of leukocytes based on electrical impedances of single cells and neural network. Cytometry A 2022; 103:439-446. [PMID: 36271498 DOI: 10.1002/cyto.a.24697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The five-part differential of leukocytes plays key roles in the diagnosis of a variety of diseases and is realized by optical examinations of single cells, which is prone to various artifacts due to chemical treatments. The classification of leukocytes based on electrical impedances without cell treatments has not been demonstrated because of limitations in approaches of impedance acquisition and data processing. In this study, based on treatment-free single-cell impedance profiles collected from impedance flow cytometry leveraging constriction microchannels, two types of neural pattern recognition were conducted for comparisons with the purpose of realizing the five-part differential of leukocytes. In the first approach, 30 features from impedance profiles were defined manually and extracted automatically, and then a feedforward neural network was conducted, producing a classification accuracy of 84.9% in the five-part leukocyte differential. In the second approach, a customized recurrent neural network was developed to process impedance profiles directly and based on deep learning, a classification accuracy of 97.5% in the five-part leukocyte differential was reported. These results validated the feasibility of the five-part leukocyte differential based on label-free impedance profiles of single cells and thus provide a new perspective of differentiating white blood cells based on impedance flow cytometry.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yimin Li
- School of Advanced Engineers, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
Wang M, Liang H, Chen X, Chen D, Wang J, Zhang Y, Chen J. Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells. BIOSENSORS 2022; 12:bios12070443. [PMID: 35884246 PMCID: PMC9313373 DOI: 10.3390/bios12070443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
This article first reviews scientific meanings of single-cell analysis by highlighting two key scientific problems: landscape reconstruction of cellular identities during dynamic immune processes and mechanisms of tumor origin and evolution. Secondly, the article reviews clinical demands of single-cell analysis, which are complete blood counting enabled by optoelectronic flow cytometry and diagnosis of hematologic malignancies enabled by multicolor fluorescent flow cytometry. Then, this article focuses on the developments of optoelectronic flow cytometry for the complete blood counting by comparing conventional counterparts of hematology analyzers (e.g., DxH 900 of Beckman Coulter, XN-1000 of Sysmex, ADVIA 2120i of Siemens, and CELL-DYN Ruby of Abbott) and microfluidic counterparts (e.g., microfluidic impedance and imaging flow cytometry). Future directions of optoelectronic flow cytometry are indicated where intrinsic rather than dependent biophysical parameters of blood cells must be measured, and they can replace blood smears as the gold standard of blood analysis in the near future.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| |
Collapse
|