1
|
Brockhoff G. Complementary Tumor Diagnosis by Single Cell-Based Cytogenetics Using Multi-marker Fluorescence In Situ Hybridization (mFISH). Curr Protoc 2023; 3:e942. [PMID: 37984366 DOI: 10.1002/cpz1.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Multi-color (or multi-marker) fluorescence in situ hybridization (mFISH) is a well-established, valuable, complementary tool for prenatal and pathological (tumor) diagnosis. A variety of chromosomal abnormalities, such as partial or total chromosomal gains, losses, inversions, or translocations, which are considered to cause genetic syndromes, can relatively easily be detected on a cell-by-cell basis. Individual cells either in suspension (e.g., in the form of a cytological specimen derived from body fluids) or within a tissue (e.g., a solid tumor specimen or biopsy) can be quantitatively evaluated with respect to the chromosomal hybridization markers of interest (e.g., a gene or centromeric region) and with due consideration of cellular heterogeneity. FISH is helpful or even essential for the (sub-)classification, stratification, and unambiguous diagnosis of a number of malignant diseases and contributes to treatment decision in many cases. Here, the diagnostic power and limitations of typical FISH and mFISH approaches (except chromosome painting and RNA hybridization) are discussed, with special emphasis on tumor and single-cell diagnostics. Well-established and novel FISH protocols, the latter addressed to accelerate and flexibilize the preparation and hybridization of formalin-fixed and paraffin-embedded tissues, are provided. Moreover, guidelines and molecular aspects important for data interpretation are discussed. Finally, sophisticated multiplexed approaches and those that analyze very rare single-cell events, which are not yet implemented in diagnostic procedures, will be touched upon. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (m)FISH applied to formaldehyde-fixed paraffin-embedded tissues Basic Protocol 2: (m)FISH applied to cytological specimens.
Collapse
Affiliation(s)
- Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Kromp F, Bozsaky E, Rifatbegovic F, Fischer L, Ambros M, Berneder M, Weiss T, Lazic D, Dörr W, Hanbury A, Beiske K, Ambros PF, Ambros IM, Taschner-Mandl S. An annotated fluorescence image dataset for training nuclear segmentation methods. Sci Data 2020; 7:262. [PMID: 32782410 PMCID: PMC7419523 DOI: 10.1038/s41597-020-00608-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/14/2020] [Indexed: 11/15/2022] Open
Abstract
Fully-automated nuclear image segmentation is the prerequisite to ensure statistically significant, quantitative analyses of tissue preparations,applied in digital pathology or quantitative microscopy. The design of segmentation methods that work independently of the tissue type or preparation is complex, due to variations in nuclear morphology, staining intensity, cell density and nuclei aggregations. Machine learning-based segmentation methods can overcome these challenges, however high quality expert-annotated images are required for training. Currently, the limited number of annotated fluorescence image datasets publicly available do not cover a broad range of tissues and preparations. We present a comprehensive, annotated dataset including tightly aggregated nuclei of multiple tissues for the training of machine learning-based nuclear segmentation algorithms. The proposed dataset covers sample preparation methods frequently used in quantitative immunofluorescence microscopy. We demonstrate the heterogeneity of the dataset with respect to multiple parameters such as magnification, modality, signal-to-noise ratio and diagnosis. Based on a suggested split into training and test sets and additional single-nuclei expert annotations, machine learning-based image segmentation methods can be trained and evaluated.
Collapse
Affiliation(s)
- Florian Kromp
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria.
| | - Eva Bozsaky
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Fikret Rifatbegovic
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Lukas Fischer
- Software Competence Center Hagenberg GmbH (SCCH), Softwarepark 21, 4232, Hagenberg, Austria
| | - Magdalena Ambros
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Maria Berneder
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria
| | - Tamara Weiss
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Daria Lazic
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Wolfgang Dörr
- ATRAB-Applied and Translational Radiobiology, Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Allan Hanbury
- Institute of Information Systems Engineering, TU Wien, Favoritenstrasse 9-11/194, 1040, Vienna, Austria
- Complexity Science Hub, Josefstädter Straße 39, 1080, Vienna, Austria
| | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, Ullernchausséen 64, N-0379, Oslo, Norway
| | - Peter F Ambros
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Inge M Ambros
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Somasundaram DB, Aravindan S, Yu Z, Jayaraman M, Tran NTB, Li S, Herman TS, Aravindan N. Droplet digital PCR as an alternative to FISH for MYCN amplification detection in human neuroblastoma FFPE samples. BMC Cancer 2019; 19:106. [PMID: 30691436 PMCID: PMC6348625 DOI: 10.1186/s12885-019-5306-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2019] [Indexed: 11/17/2022] Open
Abstract
Background MYCN amplification directly correlates with the clinical course of neuroblastoma and poor patient survival, and serves as the most critical negative prognostic marker. Although fluorescence in situ hybridization (FISH) remains the gold standard for clinical diagnosis of MYCN status in neuroblastoma, its limitations warrant the identification of rapid, reliable, less technically challenging, and inexpensive alternate approaches. Methods In the present study, we examined the concordance of droplet digital PCR (ddPCR, in combination with immunohistochemistry, IHC) with FISH for MYCN detection in a panel of formalin-fixed paraffin-embedded (FFPE) human neuroblastoma samples. Results In 112 neuroblastoma cases, ddPCR analysis demonstrated a 96–100% concordance with FISH. Consistently, IHC grading revealed 92–100% concordance with FISH. Comparing ddPCR with IHC, we observed a concordance of 95–98%. Conclusions The results demonstrate that MYCN amplification status in NB cases can be assessed with ddPCR, and suggest that ddPCR could be a technically less challenging method of detecting MYCN status in FFPE specimens. More importantly, these findings illustrate the concordance between FISH and ddPCR in the detection of MYCN status. Together, the results suggest that rapid, less technically demanding, and inexpensive ddPCR in conjunction with IHC could serve as an alternate approach to detect MYCN status in NB cases, with near-identical sensitivity to that of FISH.
Collapse
Affiliation(s)
- Dinesh Babu Somasundaram
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 451, Oklahoma City, OK, 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, Oklahoma City, OK, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Ngoc T B Tran
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 451, Oklahoma City, OK, 73104, USA
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, 1200 Children's Ave. Ste 14000, Oklahoma City, OK, 73104, USA
| | - Terence S Herman
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 451, Oklahoma City, OK, 73104, USA. .,Department of Anesthesiology, University of Oklahoma Health Sciences Center, 920 SL Young Blvd #1140, Oklahoma City, OK, 73104-5036, USA.
| |
Collapse
|
4
|
Brunner C, Brunner-Herglotz B, Ziegler A, Frech C, Amann G, Ladenstein R, Ambros IM, Ambros PF. Tumor Touch Imprints as Source for Whole Genome Analysis of Neuroblastoma Tumors. PLoS One 2016; 11:e0161369. [PMID: 27560999 PMCID: PMC4999140 DOI: 10.1371/journal.pone.0161369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Tumor touch imprints (TTIs) are routinely used for the molecular diagnosis of neuroblastomas by interphase fluorescence in-situ hybridization (I-FISH). However, in order to facilitate a comprehensive, up-to-date molecular diagnosis of neuroblastomas and to identify new markers to refine risk and therapy stratification methods, whole genome approaches are needed. We examined the applicability of an ultra-high density SNP array platform that identifies copy number changes of varying sizes down to a few exons for the detection of genomic changes in tumor DNA extracted from TTIs. MATERIAL AND METHODS DNAs were extracted from TTIs of 46 neuroblastoma and 4 other pediatric tumors. The DNAs were analyzed on the Cytoscan HD SNP array platform to evaluate numerical and structural genomic aberrations. The quality of the data obtained from TTIs was compared to that from randomly chosen fresh or fresh frozen solid tumors (n = 212) and I-FISH validation was performed. RESULTS SNP array profiles were obtained from 48 (out of 50) TTI DNAs of which 47 showed genomic aberrations. The high marker density allowed for single gene analysis, e.g. loss of nine exons in the ATRX gene and the visualization of chromothripsis. Data quality was comparable to fresh or fresh frozen tumor SNP profiles. SNP array results were confirmed by I-FISH. CONCLUSION TTIs are an excellent source for SNP array processing with the advantage of simple handling, distribution and storage of tumor tissue on glass slides. The minimal amount of tumor tissue needed to analyze whole genomes makes TTIs an economic surrogate source in the molecular diagnostic work up of tumor samples.
Collapse
Affiliation(s)
- Clemens Brunner
- Department of Tumor Biology, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Bettina Brunner-Herglotz
- Department of Tumor Biology, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Andrea Ziegler
- Department of Tumor Biology, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Christian Frech
- Department of Tumor Biology, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Gabriele Amann
- Institute of Clinical Pathology, Medical University Vienna, Vienna, Austria
| | - Ruth Ladenstein
- S2IRP, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Inge M. Ambros
- Department of Tumor Biology, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Peter F. Ambros
- Department of Tumor Biology, CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
5
|
Ambros IM, Brunner C, Abbasi R, Frech C, Ambros PF. Ultra-High Density SNParray in Neuroblastoma Molecular Diagnostics. Front Oncol 2014; 4:202. [PMID: 25161957 PMCID: PMC4129917 DOI: 10.3389/fonc.2014.00202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e., amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses. So called “segmental chromosomal aberrations,” (SCAs) i.e., gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH, and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as “chromothripsis” are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD) SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.
Collapse
Affiliation(s)
- Inge M Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Clemens Brunner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Reza Abbasi
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Christian Frech
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria ; Department of Pediatrics, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
6
|
Pajor G, Kajtár B, Pajor L, Alpár D. State-of-the-art FISHing: automated analysis of cytogenetic aberrations in interphase nuclei. Cytometry A 2012; 81:649-63. [PMID: 22696411 DOI: 10.1002/cyto.a.22082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/12/2012] [Accepted: 05/22/2012] [Indexed: 12/13/2022]
Abstract
Interphase fluorescence in situ hybridization (i-FISH) is a powerful tool for visualizing various molecular targets in non-dividing cells. Manual scoring of i-FISH signals is a labor intensive, time-consuming, and error-prone process liable to subjective interpretation. Automated evaluation of signal patterns provides the opportunity to overcome these difficulties. The first report on automated i-FISH analysis has been published 20 years ago and since then several applications have been introduced in the fields of oncology, and prenatal and fertility screening. In this article, we provide an insight into the automated i-FISH analysis including its course, brief history, clinical applications, and advantages and challenges. The lack of guidelines for describing new automated i-FISH methods hampers the precise comparison of performance of various applications published, thus, we make a proposal for a panel of parameters essential to introduce and standardize new applications and reproduce previously described technologies.
Collapse
Affiliation(s)
- Gábor Pajor
- Department of Pathology, University of Pécs, Medical School, Pécs, Hungary
| | | | | | | |
Collapse
|
7
|
Clonal heterogeneity and chromosomal instability at disease presentation in high hyperdiploid acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2011; 203:209-14. [PMID: 21156235 DOI: 10.1016/j.cancergencyto.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022]
Abstract
Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4%), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis.
Collapse
|
8
|
Klewes L, Höbsch C, Katzir N, Rourke D, Garini Y, Mai S. Novel automated three-dimensional genome scanning based on the nuclear architecture of telomeres. Cytometry A 2010; 79:159-66. [PMID: 21265009 DOI: 10.1002/cyto.a.21012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 01/14/2023]
Abstract
Telomeres, the end of chromosomes, are organized in a nonoverlapping fashion and form microterritories in nuclei of normal cells. Previous studies have shown that normal and tumor cell nuclei differ in their 3D telomeric organization. The differences include a change in the spatial organization of the telomeres, in telomere numbers and sizes and in the presence of telomeric aggregates. Previous attempts to identify the above parameters of 3D telomere organization were semi-automated. Here we describe the automation of 3D scanning for telomere signatures in interphase nuclei based on three-dimensional fluorescent in situ hybridization (3D-FISH) and, for the first time, define its sensitivity in tumor cell detection. The data were acquired with a high-throughput scanning/acquisition system that allows to measure cells and acquire 3D images of nuclei at high resolution with 40 × or 60 × oil and at a speed of 10,000-15,000 cells h(-1) , depending on the cell density on the slides. The automated scanning, TeloScan, is suitable for large series of samples and sample sizes. We define the sensitivity of this automation for tumor cell detection. The data output includes 3D telomere positions, numbers of telomeric aggregates, telomere numbers, and telomere signal intensities. We were able to detect one aberrant cell in 1,000 normal cells. In conclusions, we are able to detect tumor cells based on 3D architectural profiles of the genome. This new tool could, in the future, assist in patient diagnosis, in the detection of minimal residual disease, in the analysis of treatment response and in treatment decisions.
Collapse
Affiliation(s)
- Ludger Klewes
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Narath R, Ambros IM, Kowalska A, Bozsaky E, Boukamp P, Ambros PF. Induction of senescence in MYCN amplified neuroblastoma cell lines by hydroxyurea. Genes Chromosomes Cancer 2007; 46:130-42. [PMID: 17106870 DOI: 10.1002/gcc.20393] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, it was shown that MYCN amplified cells spontaneously expulse extrachromosomally amplified gene copies by micronuclei formation. Furthermore, it was shown that these cells lose their malignant phenotype and start to age. We tested whether it is possible to encourage neuroblastoma tumor cells to enter the senescence pathway by low concentrations of the micronuclei-inducing drug hydroxyurea (HU). We studied the effect of HU on 12 neuroblastoma cell lines with extra- or intrachromosomally amplified MYCN copies and without amplification. Two extrachromosomally amplified neuroblastoma cell lines (with double minutes) were investigated in detail. Already after 3 weeks of HU treatment, the BrdU uptake dropped to 25% of the starting cells. After 4 weeks, enlarged and flattened cells (F-cells) and increased granularity in the majority of cells were observed. A drastic reduction of the MYCN copy number-down to one copy per cell-associated with CD44 and MHCI upregulation in up to 100% of the HU treated neuroblastoma cells was found after 5-8 weeks. Telomere length was reduced to half the length within 8 weeks of HU treatment, and telomerase activity was not detectable at this time, while being strongly expressed at the beginning. All these features and the expression of senescence-associated-beta-galactosidase (SA-beta-GAL) in up to 100% of the cells support the hypothesis that these cells entered the senescence pathway. Thus, low-dose HU is a potent senescence elicitor for tumor cells with gene amplification, possibly representing an attractive additional strategy for treatment of this subset of tumors.
Collapse
Affiliation(s)
- R Narath
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Stevens R, Almanaseer I, Gonzalez M, Caglar D, Knudson RA, Ketterling RP, Schrock DS, Seemayer TA, Bridge JA. Analysis of HER2 gene amplification using an automated fluorescence in situ hybridization signal enumeration system. J Mol Diagn 2007; 9:144-50. [PMID: 17384205 PMCID: PMC1867448 DOI: 10.2353/jmoldx.2007.060102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HER2 gene, amplified in 10 to 35% of invasive human breast carcinomas, has prognostic and therapeutic implications. Fluorescent in situ hybridization is one method currently used for assessing HER2 status, but fluorescent in situ hybridization involves the time-consuming step of manual signal enumeration. To address this issue, Vysis has developed an automated signal enumeration system, Vysis AutoVysion. A multicenter, blinded study was conducted on 39 formalin-fixed, paraffin-embedded invasive breast carcinoma specimens, including 20 HER2 nonamplified and 19 HER2 amplified (weakly to highly amplified), provided in duplicate to each study site for analysis. Calculation of the HER2/CEP17 ratio and the hands-on time of both manual and automated enumeration approaches were compared. Overall agreement of HER2 classification results (positive and negative) was 92.5% (196 of 212). The Vysis AutoVysion System requires manual enumeration for cases with scanner results within the ratio range of 1.5 to 3.0. When the data in this range are excluded, the agreement between manual and scanner results is 98.8% (169 of 171). The average Vysis AutoVysion System hands-on time per slide was 4.59 versus 7.47 minutes for manual signal enumeration (savings of 2.88 minutes/slide). These data suggest that the Vysis AutoVysion System can correctly classify specimens and may increase the overall efficiency of HER2 testing.
Collapse
Affiliation(s)
- Rachel Stevens
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kajtár B, Méhes G, Lörch T, Deák L, Kneifné M, Alpár D, Pajor L. Automated fluorescent in situ hybridization (FISH) analysis of t(9;22)(q34;q11) in interphase nuclei. Cytometry A 2006; 69:506-14. [PMID: 16646048 DOI: 10.1002/cyto.a.20260] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND For chronic myeloid leukemia, the FISH detection of t(9;22)(q34;q11) in interphase nuclei of peripheral leukocytes is an alternative method to bone marrow karyotyping for monitoring treatment. With automation, several drawbacks of manual analysis may be circumvented. In this article, the capabilities of a commercially available automated image acquisition and analysis system were determined by detecting t(9;22)(q34;q11) in interphase nuclei of peripheral leukocytes. METHODS Three peripheral blood samples of normal adults, 21 samples of CML patients, and one sample of a t(9;22)(q34;q11) positive cell-line were used. RESULTS Single nuclei with correctly detected signals amounted to 99.6% of nuclei analyzed after exclusion of overlapping nuclei and nuclei with incorrect signal detection. A cut-off value of 0.84 mum was defined to discriminate between translocation positive and negative nuclei based on the shortest distance between signals. Using this value, the false positive rate of the automated analysis for negative samples was 7.0%, whereas that of the manual analysis was 5.8%. Automated and manual results showed strong correlation (R(2) = 0.985), the mean difference of results was only 3.7%. CONCLUSIONS A reliable and objective automated analysis of large numbers of cells is possible, avoiding interobserver variability and producing statistically more accurate results than manual evaluation.
Collapse
MESH Headings
- Adult
- Blood Cells/chemistry
- Cell Nucleus/chemistry
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- False Positive Reactions
- Humans
- In Situ Hybridization, Fluorescence/methods
- Interphase/genetics
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Philadelphia Chromosome
- Signal Processing, Computer-Assisted
- Translocation, Genetic
Collapse
Affiliation(s)
- Béla Kajtár
- Department of Pathology, Faculty of Medicine, University of Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
12
|
Narath R, Lörch T, Greulich-Bode KM, Boukamp P, Ambros PF. Automatic telomere length measurements in interphase nuclei by IQ-FISH. Cytometry A 2005; 68:113-20. [PMID: 16228977 DOI: 10.1002/cyto.a.20190] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To benefit from the fluorescence-based automatic microscope (FLAME), we have adapted a PNA FISH technique to automatically determine telomere length in interphase nuclei. The method relies on the simultaneous acquisition of pan-telomeric signals and reference probe signals. We compared the quantitative figures to those for existing methods, i.e. Southern blot analysis and quantitative FISH (Q-FISH). Quantitative-FISH on interphase nuclei (IQ-FISH) allows the exact quantification of telomere length in interphase nuclei. Thus, this enables us to obtain not only exact information on the telomere length, but also morphological and topological details. The automatic measurement of large cell numbers allows the measurement of statistically relevant cell populations.
Collapse
Affiliation(s)
- Rita Narath
- Children's Cancer Research Institute (CCRI), St. Anna Kinderspital, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|