1
|
Mistry P, Potgieter JJC, Pepper MS, Durandt C. Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals. Stem Cell Rev Rep 2025:10.1007/s12015-024-10834-z. [PMID: 39836357 DOI: 10.1007/s12015-024-10834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Priyal Mistry
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa
| | - Joachim J C Potgieter
- Department of Haematology, University of Pretoria, and National Health Laboratory Service (NHLS) Tshwane Academic Division (TAD), Pretoria, 0084, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.
| |
Collapse
|
2
|
Nabil R, Hassan NM, Abdellateif MS, Gawdat RM, Elshazly SS. The prognostic role of C-KIT, TET1 and TET2 gene expression in Acute Myeloid Leukemia. Mol Biol Rep 2023; 50:641-653. [PMID: 36371552 PMCID: PMC9884250 DOI: 10.1007/s11033-022-08000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
Abstract
AIM was to assess the role of C-KIT, TET1 and TET2 expression in the diagnosis and prognosis of acute myeloblastic leukemia (AML). METHODS The expression levels of C-KIT, TET1 and TET2 were assessed in the bone marrow (BM) aspirate of 152 AML patients compared to 20 healthy control using quantitative real-time polymerase chain reaction (qRT-PCR). Data were correlated with the clinico-pathological features of the patients, response to treatment, disease-free survival (DFS), and overall survival (OS) rates. RESULTS C-KIT, TET1 and TET2 were significantly upregulated in AML patients [0.25 (0-11.6), 0.0113 (0-3.301), and 0.07 (0-4); respectively], compared to the control group [0.013 (0.005-0.250), P < 0.001, 0.001 (0-0.006), P < 0.001, and 0.02 (0.008-0.055), P = 0.019; respectively]. The sensitivity, specificity, and area under curve of of C-KIT were (48.7%, 100%, 0.855; respectively, P = 0.001), and that of TET1 were (63.4%, 100%, 0.897; respectively, P = 0.001), while that of TET2 were (56.8%, 100%, 0.766; respectively, P = 0.019). When combining the three markers, the sensitivity was 77.5%, however it reached the highest sensitivity (78.6%) and specificity (100%) when combining both c-KIT + TET1 together for the diagnosis of AML. C-KIT overexpression associated with shorter DFS (P = 0.05) and increased incidence of relapse (P = 0.019). Lymph nodes involvement [HR = 2.200, P = 0.005] is an independent risk factor for shorter OS rate of AML patients. Increased BM blast % [HR = 7.768, P = 0.002], and FLT3-ITD mutation [HR = 2.989, P = 0.032] are independent risk factors for shorter DSF rate of the patients. CONCLUSION C-KIT, TET1, and TET2 could be used as possible useful biomarkers for the diagnosis of AML.
Collapse
Affiliation(s)
- Reem Nabil
- Clinical pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Naglaa M Hassan
- Clinical pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Giza, Egypt.
| | - Rania M Gawdat
- Clinical and chemical pathology department, Faculty of medicine, Beni Suef university, Beni Suef, Egypt
| | - Samar Sami Elshazly
- Clinical pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Allenby MC, Okutsu N, Brailey K, Guasch J, Zhang Q, Panoskaltsis N, Mantalaris A. A spatiotemporal microenvironment model to improve design of a 3D bioreactor for red cell production. Tissue Eng Part A 2021; 28:38-53. [PMID: 34130508 DOI: 10.1089/ten.tea.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular microenvironments provide stimuli including paracrine and autocrine growth factors and physico-chemical cues, which support efficient in vivo cell production unmatched by current in vitro biomanufacturing platforms. While three-dimensional (3D) culture systems aim to recapitulate niche architecture and function of the target tissue/organ, they are limited in accessing spatiotemporal information to evaluate and optimize in situ cell/tissue process development. Herein, a mathematical modelling framework is parameterized by single-cell phenotypic imaging and multiplexed biochemical assays to simulate the non-uniform tissue distribution of nutrients/metabolites and growth factors in cell niche environments. This model is applied to a bone marrow mimicry 3D perfusion bioreactor containing dense stromal and hematopoietic tissue with limited red blood cell (RBC) egress. The model characterized an imbalance between endogenous cytokine production and nutrient starvation within the microenvironmental niches, and recommended increased cell inoculum density and enhanced medium exchange, guiding the development of a miniaturized prototype bioreactor. The second-generation prototype improved the distribution of nutrients and growth factors and supported a 50-fold increase in RBC production efficiency. This image-informed bioprocess modelling framework leverages spatiotemporal niche information to enhance biochemical factor utilization and improve cell manufacturing in 3D systems.
Collapse
Affiliation(s)
- Mark Colin Allenby
- Queensland University of Technology, 1969, Institute of Health and Biomedical Innovation (IHBI), Kelvin Grove, Queensland, Australia.,Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Naoki Okutsu
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Kate Brailey
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Joana Guasch
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Qiming Zhang
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Nicki Panoskaltsis
- Emory University, 1371, Winship Cancer Institute, Department of Hematology & Medical Oncology, Atlanta, Georgia, United States.,Imperial College London, 4615, Department of Haematology, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Athanasios Mantalaris
- Georgia Institute of Technology, 1372, BME, Atlanta, Georgia, United States.,Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
4
|
Central and local controls of monocytopoiesis influence the outcome of Leishmania infection. Cytokine 2020; 147:155325. [PMID: 33039254 DOI: 10.1016/j.cyto.2020.155325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Leishmaniases represent a complex of tropical and subtropical diseases caused by an intracellular protozoon of the genus Leishmania. The principal cells controlling the interaction between the host and the parasite Leishmania are monocytes and macrophages, as these cells play a decisive role in establishing the pathogenesis or cure. These cells are involved in controlling the growth of Leishmania and in modulating the adaptive immune responses. The heterogeneity and extensive plasticity of monocytes allow these cells to adjust their functional phenotypes in response to the pathogen-directed immunological cues. In Leishmania-infected host, the rate of myelopoiesis is augmented by enhanced monocytic lineage commitment and proliferation of myeloid progenitor cells both in the BM and at the site of infection. These newly generated monocytes play as "safe haven" for the parasite and also as the antigen-presenting cells for T cells to cause deregulated cytokine production. This altered monocytopoiesis is characterized by tissue-specific immune responses, spatiotemporal dynamics of immunoregulation and functional heterogeneity. In the presence of Th1 cytokines, monocytes exhibit a pro-inflammatory phenotype that protects the host from Leishmania. By contrast, in an environment of Th2 cytokines, monocytes display anti-inflammatory phenotype with pro-parasitic functions. In this review, we summarize the involvement of cytokines in the regulation of monocytopoiesis and differentiation of macrophages during leishmanial infection. Understanding the role of cytokines in regulating interactions between Leishmania and the host monocytes is key to developing new therapeutic interventions against leishmaniases.
Collapse
|
5
|
Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit Rev Oncol Hematol 2019; 137:43-56. [DOI: 10.1016/j.critrevonc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
|
6
|
Yang S, Li H, Xu L, Deng Z, Han W, Liu Y, Jiang W, Zu Y. Oligonucleotide Aptamer-Mediated Precision Therapy of Hematological Malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:164-175. [PMID: 30292138 PMCID: PMC6172475 DOI: 10.1016/j.omtn.2018.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023]
Abstract
Precision medicine has recently emerged as a promising strategy for cancer therapy because it not only specifically targets cancer cells but it also does not have adverse effects on normal cells. Oligonucleotide aptamers are a class of small molecule ligands that can specifically bind to their targets on cell surfaces with high affinity. Aptamers have great potential in precision cancer therapy due to their unique physical, chemical, and biological properties. Therefore, aptamer technology has been widely investigated for biomedical and clinical applications. This review focuses on the potential applications of aptamer technology as a new tool for precision treatment of hematological malignancies, including leukemia, lymphoma, and multiple myeloma.
Collapse
Affiliation(s)
- Shuanghui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Huan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ling Xu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhenhan Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wei Han
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yanting Liu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Wenqi Jiang
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Murakami T, Sassa Y. Pleomorphic Malignant Mesothelioma in a Broiler Breeder Infected with Avian Leucosis Virus Subgroup J. J Comp Pathol 2018; 160:50-55. [PMID: 29729721 DOI: 10.1016/j.jcpa.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Avian leucosis virus (ALV) is an oncogenic retrovirus that induces tumours including lymphoid leucosis and myeloid leucosis. Pleomorphic malignant mesothelioma and myelocytoma, which were thought to be induced by ALV subgroup J (ALV-J) infection, were identified in a 432-day-old broiler breeder. The bird showed no clinical signs; however, at necropsy examination there were multiple nodules in the alimentary tract. Microscopical analysis showed that these consisted of pleomorphic cells and myelocyte-like cells. Immunohistochemistry revealed that the pleomorphic cells were atypical and expressed cytokeratin, vimentin, c-kit, calretinin and ALV. The myelocyte-like cells were also positive for ALV. Retroviral type C particles were observed by electron microscopy. ALV-E and ALV-J nucleotide sequences were detected in DNA extracted from formalin-fixed and paraffin wax-embedded small intestinal tissue. Based on these results, the tumours were diagnosed as pleomorphic malignant mesothelioma and myelocytoma and were thought to have been induced by ALV-J infection. This is the first report of malignant mesothelioma associated with naturally acquired ALV-J infection.
Collapse
Affiliation(s)
- T Murakami
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, Japan
| | - Y Sassa
- Laboratory of Veterinary Infectious Disease, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, Japan.
| |
Collapse
|
8
|
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 2015; 36:1219-27. [PMID: 26388155 PMCID: PMC4648179 DOI: 10.1038/aps.2015.92] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies.
Collapse
|
9
|
Ahmadi A, Poorfathollah AA, Aghaiipour M, Rezaei M, Nikoo-ghoftar M, Abdi M, Gharib A, Amini A. Diagnostic value of CD117 in differential diagnosis of acute leukemias. Tumour Biol 2014; 35:6763-8. [PMID: 24722823 DOI: 10.1007/s13277-014-1899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/26/2014] [Indexed: 11/25/2022] Open
Abstract
C-kit receptor (CD117) and its ligand, stem cell factor, play a key role in normal hematopoiesis. It has been demonstrated that its expression extremely increases in leukemias with myeloid commitment. We analyzed findings on CD117 expression together with other myeloid related markers in 203 de novo acute leukemias, referred to Iranian immunophenotyping centers: Iranian Blood Transfusion Organization (IBTO) and Baghiatallah Hospital (BH). All cases were characterized based on the French American British cooperative group (FAB) and European Group for Immunological Classification of Leukemias (EGIL). The cases comprised of 111 acute myeloblastic leukemia (AML), 86 acute lymphoblastic leukemia (ALL), and 6 acute undifferentiated leukemia (AUL). CD117 was positive in 75 % of AML and 50 % of AUL, whereas none of the ALL cases was positive for this marker. Although CD117 was positive in 100 % of M5a cases, no M5b positive was found (p = 0.036). The calculated specificity for myeloid involvement was 100 % for CD117 and CD33, and 98 % for CD13 and CD15 (p < 0.001). The calculated sensitivity for myeloid involvement was 83, 76, 64, and 41 % for CD13, CD117, CD33, and CD15, respectively (p < 0.001). We concluded that CD117 expression is a specific and rather sensitive marker for differential diagnosis between AML and ALL, and except for M5 subtypes, it fails to determine FAB subtypes; lack of expression in M5 can identify M5b. Therefore, it should be included in the routine primary panel for diagnosis of acute leukemias.
Collapse
Affiliation(s)
- Abbas Ahmadi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Pasdaran Boulevard, Sanandaj, Iran,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.
Collapse
|
11
|
Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest 2013; 123:2395-407. [PMID: 23676502 DOI: 10.1172/jci66553] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/07/2013] [Indexed: 12/21/2022] Open
Abstract
We examined the role of microRNAs (miRNAs) in targeting the stromal-derived factor 1α/CXCR4 (SDF-1α/CXCR4) axis to overcome chemoresistance of AML cells. Microarray analysis of OCI-AML3 cells revealed that the miRNA let-7a was downregulated by SDF-1α-mediated CXCR4 activation and increased by CXCR4 inhibition. Overexpression of let-7a in AML cell lines was associated with decreased c-Myc and BCL-XL protein expression and enhanced chemosensitivity, both in vitro and in vivo. We identified the transcription factor Yin Yang 1 (YY1) as a link between SDF-1α/CXCR4 signaling and let-7a, as YY1 was upregulated by SDF-1α and downregulated by treatment with a CXCR4 antagonist. ChIP assay confirmed the binding of YY1 to unprocessed let-7a DNA fragments, and treatment with YY1 shRNA increased let-7a expression. In primary human AML samples, high CXCR4 expression was associated with low let-7a levels. Xenografts of primary human AML cells engineered to overexpress let-7a exhibited enhanced sensitivity to cytarabine, resulting in greatly extended survival of immunodeficient mice. Based on these data, we propose that CXCR4 induces chemoresistance by downregulating let-7a to promote YY1-mediated transcriptional activation of MYC and BCLXL in AML cells.
Collapse
Affiliation(s)
- Ye Chen
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
12
|
Irish JM, Kotecha N, Nolan GP. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 2006; 6:146-55. [PMID: 16491074 DOI: 10.1038/nrc1804] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oncogenesis and tumour progression are supported by alterations in cell signalling. Using flow cytometry, it is now possible to track and analyse signalling events in individual cancer cells. Data from this type of analysis can be used to create a network map of signalling in each cell and to link specific signalling profiles with clinical outcomes. This form of 'single-cell proteomics' can identify pathways that are activated in therapy-resistant cells and can provide biomarkers for cancer diagnosis and for determining patient prognosis.
Collapse
Affiliation(s)
- Jonathan M Irish
- Department of Medicine, Oncology Division, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
13
|
Auewarakul CU, Lauhakirti D, Promsuwicha O, Munkhetvit C. C-kit receptor tyrosine kinase (CD117) expression and its positive predictive value for the diagnosis of Thai adult acute myeloid leukemia. Ann Hematol 2005; 85:108-12. [PMID: 16320053 DOI: 10.1007/s00277-005-0039-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Accepted: 07/30/2005] [Indexed: 12/16/2022]
Abstract
We examined the expression of c-kit receptor tyrosine kinase in 195 Thai adult patients with acute leukemia and determined its specificity and predictive values for the diagnosis of adult acute myeloid leukemia (AML). CD117 was used to detect c-kit expression on CD45 and side-scatter-gated blast cells by flow cytometry. Of 163 AML cases, 67% expressed CD117. None of acute lymphoid leukemia (ALL) had CD117 expression, except one case of T-ALL. The majority of AML patients carrying t(8;21), inv(16), and t(15;17) had high CD117 expression. High proportion of AML cases without c-kit expressed monocytic markers. Significant associations between CD117 and CD34 (P<0.001), CD13 (P=0.006), CD7 (P=0.034), and CD19 (P<0.001) were found in AML cases. The calculated specificity of CD117 for the diagnosis of AML was 0.97, which was higher than CD13 (0.78) and CD33 (0.75) but comparable to MPO (0.97). The positive predictive value (PPV) of CD117 for AML was 0.99, with the negative predictive value of 0.35. In conclusion, the majority of Thai adult AML cases expressed c-kit. C-kit is infrequently expressed in ALL and appeared to be specific for AML with high PPV. Future targeting therapy using c-kit as a therapeutic target should benefit the majority of Thai AML patients who had high c-kit expression.
Collapse
Affiliation(s)
- Chirayu U Auewarakul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand.
| | | | | | | |
Collapse
|
14
|
|
15
|
Kraj M, Pogłód R, Kopeć-Szlezak J, Sokołowska U, Woźniak J, Kruk B. C-kit receptor (CD117) expression on plasma cells in monoclonal gammopathies. Leuk Lymphoma 2005; 45:2281-9. [PMID: 15512818 DOI: 10.1080/10428190412331283279] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The surface expression of CD117 antigen (c-kit) on plasma cells from 158 multiple myeloma (MM), 12 plasma cell leukemia (PCL), 7 MGUS, 7 IgM lymphoplasmacytic lymphoma patients and 10 healthy subjects has been analyzed by flow cytometry using triple staining with the monoclonal antibodies CD138, CD117 and CD38. The antigen expression intensity was calculated as relative fluorescence intensity (RFI) and for direct quantitative analysis the QuantiBRITE test (Becton Dickinson) was applied. Antibody bounding capacity (ABC) was calculated using QuantiCALC software. CD117 antigen was present in 49/158 MM, 5/12 PCL and 5/7 MGUS patients. The RFI values ranged from 0.2 to 20.2 in particular MM patients (mean: 11.0+/-5.3; median 11.5) while the number of CD117 binding sites (ABC) on MM plasma cells ranged from 637 to 6217 (mean: 3029+/-1568; median 2946) (r=0.8328). In responsive to chemotherapy c-kit positive MM patients the percentage of CD117+ plasma cells in the bone marrow decreased significantly while in c-kit negative MM patients the percentage of CD117+ cells in bone marrow did not change and remained in the normal limits. When comparing the clinical and biological disease characteristics (monoclonal protein isotype, albumin, beta2-microglobulin, lactate dehydrogenase, stage of disease, response to chemotherapy, survival time) of c-kit positive and c-kit negative cases, no significant differences were found. In CD117 positive PCL cases expression of CD117 was detected in bone marrow plasma cells as well as in peripheral blood plasma cells. Normal plasma cells and those in IgM lymphoplasmacytic lymphoma did not show reactivity for the CD117 antigen. We conclude that it may be rationale to consider usefulness of therapy with tyrosine kinase inhibitors in the management of c-kit positive plasma cell proliferations. In one third of MM and PCL patients c-kit antigen could be considered as a "tumor associated marker" and together with CD38 and CD138 it may be of value for the identification of the malignant clone in minimal residual disease as it was first suggested by Spanish authors.
Collapse
Affiliation(s)
- Maria Kraj
- Department of Hematology, Institute of Hematology and Blood Transfusion, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|