1
|
Tettero JM, Buisman Y, Ngai LL, Bachas C, Gjertsen BT, Kelder A, van de Loosdrecht AA, Manz MG, Pabst T, Scholten W, Ossenkoppele GJ, Cloos J, de Leeuw DC. Prognostic Significance of Measurable Residual Disease Detection by Flow Cytometry in Autologous Stem Cell Apheresis Products in AML. Hemasphere 2023; 7:e981. [PMID: 38026789 PMCID: PMC10664848 DOI: 10.1097/hs9.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Jesse M. Tettero
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Yara Buisman
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | | | - Angèle Kelder
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital, Zurich, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - Thomas Pabst
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland
| | - Willemijn Scholten
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - David C. de Leeuw
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Vegi NM, Chakrabortty S, Zegota MM, Kuan SL, Stumper A, Rawat VPS, Sieste S, Buske C, Rau S, Weil T, Feuring-Buske M. Somatostatin receptor mediated targeting of acute myeloid leukemia by photodynamic metal complexes for light induced apoptosis. Sci Rep 2020; 10:371. [PMID: 31941913 PMCID: PMC6962389 DOI: 10.1038/s41598-019-57172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by relapse and treatment resistance in a major fraction of patients, underlining the need of innovative AML targeting therapies. Here we analysed the therapeutic potential of an innovative biohybrid consisting of the tumor-associated peptide somatostatin and the photosensitizer ruthenium in AML cell lines and primary AML patient samples. Selective toxicity was analyzed by using CD34 enriched cord blood cells as control. Treatment of OCI AML3, HL60 and THP1 resulted in a 92, and 99 and 97% decrease in clonogenic growth compared to the controls. Primary AML cells demonstrated a major response with a 74 to 99% reduction in clonogenicity in 5 of 6 patient samples. In contrast, treatment of CD34+ CB cells resulted in substantially less reduction in colony numbers. Subcellular localization assays of RU-SST in OCI-AML3 cells confirmed strong co-localization of RU-SST in the lysosomes compared to the other cellular organelles. Our data demonstrate that conjugation of a Ruthenium complex with somatostatin is efficiently eradicating LSC candidates of patients with AML. This indicates that receptor mediated lysosomal accumulation of photodynamic metal complexes is a highly attractive approach for targeting AML cells.
Collapse
Affiliation(s)
- Naidu M Vegi
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University, AP - Amaravati, Andhra Pradesh, 522502, India.,Max Planck Institute for Polymer Research, D-55128, Mainz, Germany
| | - Maksymilian M Zegota
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Anne Stumper
- Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Stefanie Sieste
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Michaela Feuring-Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany. .,Department of Internal Medicine III, University Hospital Ulm, D-89081, Ulm, Germany.
| |
Collapse
|
3
|
Garg S, Shanmukhaiah C, Marathe S, Mishra P, Babu Rao V, Ghosh K, Madkaikar M. Differential antigen expression and aberrant signaling via PI3/AKT, MAP/ERK, JAK/STAT, and Wnt/β catenin pathways in Lin-/CD38-/CD34+ cells in acute myeloid leukemia. Eur J Haematol 2015; 96:309-17. [PMID: 26010294 DOI: 10.1111/ejh.12592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 01/16/2023]
Abstract
Acute myeloid leukemia is often called as stem cell disease that presents with treatment failure and poor disease outcome. Leukemic stem cells in acute myeloid leukemia (AML) are enriched in Lineage-/CD38-/CD34+ compartment of CD34-positive AML. Many markers important for stem cell biology have been reported for their association with leukemic stem cell population, but what remains clinically most important is a rapid identification of prognostic information. In this study, we evaluated four signal transduction pathways and thirteen markers on Lin-/CD38-/CD34+ population in AML. Expressions were compared in different AML subtypes, survival, and treatment outcome groups. We observed that markers important in homing, cell quiescence, and signal propagation such as CD44, CD96, CD90, WT-1, CD123 and CD25 were most significantly differentially expressed on Lin-/CD38-/CD34+ population in AML from their normal counterparts (P < 0.05, Mann-Whitney). Constitutive activation of phospho ERK, AKT, and STAT5 in these cells was associated with poor outcome. Also, an increased frequency of putative leukemic stem cell population shows negative impact on treatment outcome and overall survival, suggesting that initial evaluation of AML samples for pLSC frequency and constitutively activated signaling pathway can provide prognostic and therapeutic information at the time of diagnosis.
Collapse
Affiliation(s)
- Swati Garg
- National Institute of Immunohaematology, Mumbai, India
| | | | - Supreet Marathe
- Cardio Vascular and Thoracic Centre, KEM Hospital, Mumbai, India
| | - Prashant Mishra
- Cardio Vascular and Thoracic Centre, KEM Hospital, Mumbai, India
| | | | | | | |
Collapse
|
4
|
Schramm HM. Should EMT of Cancer Cells Be Understood as Epithelial-Myeloid Transition? J Cancer 2014; 5:125-32. [PMID: 24494030 PMCID: PMC3909767 DOI: 10.7150/jca.8242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer cells express epithelial markers, and when progressing in malignancy they may express markers of the mesenchymal cell type. Therefore an epithelial-mesenchymal transition of the cancer cells is assumed. However the mesenchymal markers can equally well be interpreted as myeloid markers since they are common in both types of cell lineages. Moreover, cancer cells express multiple specific markers of the myeloid lineages thus giving rise to the hypothesis that the transition of cancer cells may be from epithelial to myeloid cells and not to mesenchymal cells. This interpretation would better explain why cancer cells, often already in their primary cancer site, frequently show properties common to those of macrophages, platelets and pre-/osteoclasts.
Collapse
Affiliation(s)
- Henning M. Schramm
- Institute Hiscia, Society for Cancer Research, CH-4144 Arlesheim/Switzerland
| |
Collapse
|
5
|
Adini A, Adini I, Ghosh K, Benny O, Pravda E, Hu R, Luyindula D, D'Amato RJ. The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 2012; 16:405-16. [PMID: 23150059 DOI: 10.1007/s10456-012-9323-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 11/05/2012] [Indexed: 12/12/2022]
Abstract
Prominin-1, a pentaspan transmembrane protein, is a unique cell surface marker commonly used to identify stem cells, including endothelial progenitor cells and cancer stem cells. However, recent studies have shown that prominin-1 expression is not restricted to stem cells but also occurs in modified forms in many mature adult human cells. Although prominin-1 has been studied extensively as a stem cell marker, its physiological function of the protein has not been elucidated. We investigated prominin-1 function in two cell lines, primary human endothelial cells and B16-F10 melanoma cells, both of which express high levels of prominin-1. We found that prominin-1 directly interacts with the angiogenic and tumor survival factor vascular endothelial growth factor (VEGF) in both the primary endothelial cells and the melanoma cells. Knocking down prominin-1 in the endothelial cells disrupted capillary formation in vitro and decreased angiogenesis in vivo. Similarly, tumors derived from prominin-1 knockdown melanoma cells had a reduced growth rate in vivo. Further, melanoma cells with knocked down prominin-1 had diminished ability to interact with VEGF, which was associated with decreased bcl-2 protein levels and increased apoptosis. In vitro studies with soluble prominin-1 showed that it stabilized dimer formation of VEGF164, but not VEGF121. Taken together, our findings support the notion that prominin-1 plays an active role in cell growth through its ability to interact and potentiate the anti-apoptotic and pro-angiogenic activities of VEGF. Additionally, prominin-1 promotes tumor growth by supporting angiogenesis and inhibiting tumor cell apoptosis.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
AC133 expression in egyptian children with acute leukemia: impact on treatment response and disease outcome. J Pediatr Hematol Oncol 2010; 32:286-93. [PMID: 20224439 DOI: 10.1097/mph.0b013e3181c80c08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AC133 antigen is expressed restrictively in the immature subset of the CD34 cells. Hence, it is expected to be a valuable prognostic marker in acute leukemia. Sixty Egyptian children with acute leukemia were enrolled into this prospective study divided into 2 groups: 30 acute myeloblastic leukemia (AML) and 30 acute lymphoblastic leukemia (ALL) patients. Flow cytometric assessment of AC133 expression was performed on CD34 blast cells. AC133 was expressed in 66.7% and 40% of AML and ALL patients, respectively. AC133-positive expression was not associated with any of the studied standard prognostic factors. In AML, 80% of patients with poor clinical outcome (relapse or death) were positive for AC133 expression, whereas, all ALL patients who developed resistance as well as those who displayed poor clinical outcome had AC133-positive expression (P<0.05). Patients with positive AC133 expression had significantly shorter overall and disease-free survival times compared with AC133-negative patients in both ALL (P<0.001) and AML (P<0.05) groups. AC133 expression percentage was a reliable poor prognostic marker in ALL patients (P<0.0001). AC133-positive expression is an independent poor prognostic factor in childhood acute leukemia and could characterize a group of patients with resistance to standard chemotherapy, as well as high incidence of relapse and death.
Collapse
|