1
|
George NG, Rishi B, Ray S, Kaur M, Kamal R, Garg S, Mehndiratta S, Chopra N, Zaman S, Singh A, Misra A. Combinatory Flowcytometric Approach in Pediatric Acute Lymphoid Leukemia Identifies Surrogate Minimal Residual Disease Markers. Diagnostics (Basel) 2025; 15:658. [PMID: 40150002 PMCID: PMC11941652 DOI: 10.3390/diagnostics15060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Minimal residual disease (MRD) refers to the resistant clonal population of leukemia cells that survive induction chemotherapy, serving as a critical indicator of treatment response in pediatric Acute Lymphoid Leukemia (ALL). While flow cytometry (FCM) and molecular methods are standard for MRD detection, novel leukemia-associated immunophenotype (LAIP) markers are needed when conventional markers are insufficient. Methods: MRD was assessed in 218 pediatric B-ALL patients using a combinatory approach of Different-from-Normal (DfN) and LAIP strategies. An eight-color flow cytometry panel included routine MRD markers (e.g., CD10, CD19, and CD20) and less commonly used markers (e.g., CD123, CD73, CD86). Cytogenetic and molecular profiling were integrated to evaluate the association between genetic abnormalities and MRD positivity. Results: The combined DfN and LAIP approach enhanced MRD detection sensitivity compared to individual methods. CD7 showed a significant association with MRD positivity (p = 0.003), whereas CD73 (p = 0.000) and CD86 (p = 0.002) correlated with MRD-negative status. CD123 exhibited the highest aberrancy among MRD-positive cases, while CD81 had the lowest. These findings highlight the prognostic potential of CD73 and CD86 for MRD-negative status, complementing the established utility of CD123. Conclusions: Incorporating novel markers (CD123, CD73, CD86, and CD81) into MRD panels enhances detection sensitivity and clinical applicability. These markers are compatible with standard flow cytometry, supporting their integration into routine practice for comprehensive MRD evaluation, ultimately improving therapeutic outcomes in pediatric B-ALL.
Collapse
Affiliation(s)
- Noreen Grace George
- ICMR-National Institute of Child Health and Development Research (Formerly ICMR-National Institute of Pathology), New Delhi 110029, India
| | - Bhavika Rishi
- ICMR-National Institute of Child Health and Development Research (Formerly ICMR-National Institute of Pathology), New Delhi 110029, India
| | - Sanghmitra Ray
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Manpreet Kaur
- ICMR-National Institute of Child Health and Development Research (Formerly ICMR-National Institute of Pathology), New Delhi 110029, India
| | - Raj Kamal
- ICMR-National Institute of Child Health and Development Research (Formerly ICMR-National Institute of Pathology), New Delhi 110029, India
| | | | - Sumit Mehndiratta
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Nidhi Chopra
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Shamsuz Zaman
- ICMR-National Institute of Cancer Prevention, Noida 201301, India
| | - Amitabh Singh
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Aroonima Misra
- ICMR-National Institute of Child Health and Development Research (Formerly ICMR-National Institute of Pathology), New Delhi 110029, India
| |
Collapse
|
2
|
Semchenkova A, Mikhailova E, Demina I, Roumiantseva J, Karachunskiy A, Novichkova G, Popov A. Analysis of Antigen Expression in T-Cell Acute Lymphoblastic Leukemia by Multicolor Flow Cytometry: Implications for the Detection of Measurable Residual Disease. Int J Mol Sci 2025; 26:2002. [PMID: 40076625 PMCID: PMC11899820 DOI: 10.3390/ijms26052002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Multicolor flow cytometry (MFC) is a key method for assessing measurable residual disease (MRD) in acute lymphoblastic leukemia (ALL). However, very few approaches were developed for MRD in T-cell ALL (T-ALL). To identify MRD markers suitable for T-ALL, we analyzed the expression of CD2, CD3, CD4, CD5, CD7, CD8, CD10, CD34, CD45, CD48, CD56, CD99, and HLA-DR in T-ALL patients at diagnosis. The median fluorescence intensities (MFIs) of surface CD3, CD4, CD5, CD7, CD8, CD45, CD48, CD99, and CD16+CD56 were also evaluated at Day 15 and the end-of-induction (EOI). The MFC data from 198 pediatric T-ALL patients were analyzed retrospectively. At diagnosis, the most common antigens were identified, and the MFI of T-lineage antigens in blasts was compared to that in T lymphocytes. At follow-up, the MFIs of the proposed MRD markers were compared to those observed at diagnosis. The most common T-ALL antigens were CD7 (100.0%), intracellular CD3 (100.0%), CD45 (98.5%), and CD5 (90.9%). The MFIs of T-lineage antigens in blasts differed significantly from those in T lymphocytes. By the EOI, a substantial modulation of sCD3, CD4, CD5, CD7, CD8, and CD45 was observed. CD48 and CD99 were the most stable markers. The proposed MRD markers (sCD3, CD4, CD5, CD7, CD8, CD45, CD48, CD99, CD16+CD56) enabled MFC-MRD monitoring in virtually all T-ALL patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St., Moscow 117198, Russia; (A.S.)
| |
Collapse
|
3
|
Péterffy B, Nádasi TJ, Krizsán S, Horváth A, Márk Á, Barna G, Timár B, Almási L, Müller J, Csanádi K, Rakonczai A, Nagy Z, Kállay K, Kertész G, Kriván G, Csóka M, Sebestyén A, Semsei ÁF, Kovács GT, Erdélyi DJ, Bödör C, Egyed B, Alpár D. Digital PCR-based quantification of miR-181a in the cerebrospinal fluid aids patient stratification in pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:28556. [PMID: 39558071 PMCID: PMC11574027 DOI: 10.1038/s41598-024-79733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Despite remarkable improvements in the survival of pediatric acute lymphoblastic leukemia (ALL), sensitive detection and clinical management of central nervous system leukemia (CNSL) are still immensely challenging. Blast cells residing in the CNS but not circulating in the cerebrospinal fluid (CSF) remain undetected by current diagnostic methods, preventing a truly risk-adapted anti-leukemic treatment in this compartment. We examined the clinical applicability of the molecular marker microRNA (miR)-181a quantified in the cell-free CSF to evaluate the level of CNS involvement and to optimize patient stratification based on CNS status. Normalized copy number of miR-181a was longitudinally profiled using droplet digital PCR, and the results were compared with the degree of leukemic involvement of the CNS. After combining cytospin- and flow cytometry (FCM) data with miR-181a expression, we could stratify previously ambiguous cases and reclassify patients into a CNS-positive/miR-significant group (mean ± SE for miR-181a copies: 3300.70 ± 809.69) bearing remarkable infiltration as well as into CNS-minimal/miR-significant and CNS-minimal/miR-minimal groups differentiating putative, clinically significant occult CNSL cases (2503.50 ± 275.89 and 744.02 ± 86.81 copies, respectively, p = 1.13 × 10-6). In summary, miR-181a expression is a promising biomarker for CNSL detection, facilitating the robust identification of patients who could benefit from intensified CNS-directed therapy.
Collapse
Grants
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- 739593 Horizon 2020 Framework Programme
- 739593 Horizon 2020 Framework Programme
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- EFOP-3.6.3-VEKOP-16-2017-00009 Complementary Research Excellence Program of Semmelweis University
- BO/00125/22 János Bolyai Research Scholarship
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Tamás J Nádasi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Horváth
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Botond Timár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Laura Almási
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Judit Müller
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, 86 Üllői Str, 1089, Budapest, Hungary
| | - Anna Rakonczai
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Zsolt Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Monika Csóka
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary
| | - Gábor T Kovács
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Dániel J Erdélyi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary.
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary.
| | - Donát Alpár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| |
Collapse
|
4
|
Verbeek MWC, Rodríguez BS, Sedek L, Laqua A, Buracchi C, Buysse M, Reiterová M, Oliveira E, Morf D, Oude Alink SR, Barrena S, Kohlscheen S, Nierkens S, Hofmans M, Fernandez P, de Costa ES, Mejstrikova E, Szczepanski T, Slota L, Brüggemann M, Gaipa G, Grigore G, van Dongen JJM, Orfao A, van der Velden VHJ. Minimal residual disease assessment in B-cell precursor acute lymphoblastic leukemia by semi-automated identification of normal hematopoietic cells: A EuroFlow study. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:252-263. [PMID: 37740440 DOI: 10.1002/cyto.b.22143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Presence of minimal residual disease (MRD), detected by flow cytometry, is an important prognostic biomarker in the management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, data-analysis remains mainly expert-dependent. In this study, we designed and validated an Automated Gating & Identification (AGI) tool for MRD analysis in BCP-ALL patients using the two tubes of the EuroFlow 8-color MRD panel. The accuracy, repeatability, and reproducibility of the AGI tool was validated in a multicenter study using bone marrow follow-up samples from 174 BCP-ALL patients, stained with the EuroFlow BCP-ALL MRD panel. In these patients, MRD was assessed both by manual analysis and by AGI tool supported analysis. Comparison of MRD levels obtained between both approaches showed a concordance rate of 83%, with comparable concordances between MRD tubes (tube 1, 2 or both), treatment received (chemotherapy versus targeted therapy) and flow cytometers (FACSCanto versus FACSLyric). After review of discordant cases by additional experts, the concordance increased to 97%. Furthermore, the AGI tool showed excellent intra-expert concordance (100%) and good inter-expert concordance (90%). In addition to MRD levels, also percentages of normal cell populations showed excellent concordance between manual and AGI tool analysis. We conclude that the AGI tool may facilitate MRD analysis using the EuroFlow BCP-ALL MRD protocol and will contribute to a more standardized and objective MRD assessment. However, appropriate training is required for the correct analysis of MRD data.
Collapse
Affiliation(s)
- Martijn W C Verbeek
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Beatriz Soriano Rodríguez
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lukasz Sedek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Laqua
- Department of Hematology, University of Schleswig-Holstein, Kiel, Germany
| | - Chiara Buracchi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Malicorne Buysse
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Michaela Reiterová
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Elen Oliveira
- Pediatrics Institute IPPMG, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Morf
- Institute for Laboratory Medicine, Aarau, Switzerland
| | - Sjoerd R Oude Alink
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susana Barrena
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Saskia Kohlscheen
- Department of Hematology, University of Schleswig-Holstein, Kiel, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mattias Hofmans
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Elaine Sobral de Costa
- Pediatrics Institute IPPMG, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ester Mejstrikova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Lukasz Slota
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Monika Brüggemann
- Department of Hematology, University of Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Gaipa
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Jacques J M van Dongen
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Leiden University Medical Center (LUMC), The Netherlands
| | - Alberto Orfao
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Vincent H J van der Velden
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Wang YL, Chang TY, Wen YC, Yang SH, Hsiao YW, Chiu CC, Chen YC, Hu RS, Chen SH, Jaing TH, Hsiao CC. Blinatumomab in Children with MRD-Positive B-Cell Precursor Acute Lymphoblastic Leukemia: A Report of 11 Cases. Hematol Rep 2024; 16:347-353. [PMID: 38921183 PMCID: PMC11204057 DOI: 10.3390/hematolrep16020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Background/Objectives: Relapsed B-cell acute lymphoblastic leukemia (B-ALL) remains an unresolved matter of concern regarding adverse outcomes. This case study aimed to evaluate the effectiveness of blinatumomab, with or without door lymphocyte infusion (DLI), in treating measurable residual disease (MRD)-positive B-ALL. Methods: All patients who received blinatumomab salvage therapy were included in this study. Eleven patients were included in the study. All patients were evaluated for MRD-negativity. Results: Before starting blinatumomab therapy, seven patients tested positive for MRD, three tested negative, and one had refractory disease. Hematopoietic cell transplantation (HCT) was reserved for five patients with persistent MRD. Six patients became MRD-negative and subsequent HCT was not performed. Only two patients relapsed; one patient died of relapse, and the other one received carfilzomib-based therapy and was MRD-negative thereafter. Nine patients were MRD-negative at a median follow-up of 28 months (15-52 months). Two of three MRD-positive post-transplant patients remained in complete molecular remission after preemptive DLI at the last follow-up date. In the first salvage, blinatumomab may achieve complete remission and bridging to HCT in pediatric patients with end-of-induction MRD-positive B-cell precursor ALL. Conclusions: The decision on how to treat post-transplant relapse continues to affect survival outcomes. Blinatumomab combined with DLI may extend the armamentarium of release options for high-risk pediatric patients. This approach is encouraging for high-risk ALL patients who are MRD-positive post-transplantation.
Collapse
Affiliation(s)
- Yi-Lun Wang
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
| | - Tsung-Yen Chang
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Shu-Ho Yang
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Yi-Wen Hsiao
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ruei-Shan Hu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shih-Hsiang Chen
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Tang-Her Jaing
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| |
Collapse
|
6
|
Buldini B, Varotto E, Maurer-Granofszky M, Gaipa G, Schumich A, Brüggemann M, Mejstrikova E, Cazzaniga G, Hrusak O, Szczepanowski M, Scarparo P, Zimmermann M, Strehl S, Schinnerl D, Zaliova M, Karawajew L, Bourquin JP, Feuerstein T, Cario G, Alten J, Möricke A, Biffi A, Parasole R, Fagioli F, Valsecchi MG, Biondi A, Locatelli F, Attarbaschi A, Schrappe M, Conter V, Basso G, Dworzak MN. CD371-positive pediatric B-cell acute lymphoblastic leukemia: propensity to lineage switch and slow early response to treatment. Blood 2024; 143:1738-1751. [PMID: 38215390 DOI: 10.1182/blood.2023021952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024] Open
Abstract
ABSTRACT In the effort to improve immunophenotyping and minimal residual disease (MRD) assessment in acute lymphoblastic leukemia (ALL), the international Berlin-Frankfurt-Münster (iBFM) Flow Network introduced the myelomonocytic marker CD371 for a large prospective characterization with a long follow-up. In the present study, we aimed to investigate the clinical and biological features of CD371-positive (CD371pos) pediatric B-cell precursor ALL (BCP-ALL). From June 2014 to February 2017, 1812 pediatric patients with newly diagnosed BCP-ALLs enrolled in trial AIEOP-BFM ALL 2009 were evaluated as part of either a screening (n = 843, Italian centers) or validation cohort (n = 969, other iBFM centers). Laboratory assessment at diagnosis consisted of morphological, immunophenotypic, and genetic analysis. Response assessment relied on morphology, multiparametric flow cytometry (MFC), and polymerase chain reaction (PCR)-MRD. At diagnosis, 160 of 1812 (8.8%) BCP-ALLs were CD371pos. This correlated with older age, lower ETV6::RUNX1 frequency, immunophenotypic immaturity (all P < .001), and strong expression of CD34 and of CD45 (P < .05). During induction therapy, CD371pos BCP-ALLs showed a transient myelomonocytic switch (mm-SW: up to 65.4% of samples at day 15) and an inferior response to chemotherapy (slow early response, P < .001). However, the 5-year event-free survival was 88.3%. Among 420 patients from the validation cohort, 27 of 28 (96.4%) cases positive for DUX4-fusions were CD371pos. In conclusion, in the largest pediatric cohort, CD371 is the most sensitive marker of transient mm-SW, whose recognition is essential for proper MFC MRD assessment. CD371pos is associated to poor early treatment response, although a good outcome can be reached after MRD-based ALL-related therapies.
Collapse
Affiliation(s)
- Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padua, Padua, Italy
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Elena Varotto
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padua, Padua, Italy
| | | | - Giuseppe Gaipa
- Tettamanti Center, IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Angela Schumich
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Monika Brüggemann
- Department of Internal Medicine I, Hematology Laboratory, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Giovanni Cazzaniga
- Tettamanti Center, IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Ondrej Hrusak
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Monika Szczepanowski
- Department of Internal Medicine I, Hematology Laboratory, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pamela Scarparo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padua, Padua, Italy
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Leonid Karawajew
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin, Berlin, Germany
| | - Jean-Pierre Bourquin
- Division of Oncology and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Tamar Feuerstein
- Immune Phenotype Laboratory, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Julia Alten
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Anja Möricke
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padua, Padua, Italy
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Rosanna Parasole
- Department of Oncology, Hematology and Cellular Therapy, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | | | - Andrea Biondi
- Pediatrics, IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
- Department of Health Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Giuseppe Basso
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padua, Padua, Italy
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Chatterjee G, Dhende P, Raj S, Shetty V, Ghogale S, Deshpande N, Girase K, Patil J, Kalra A, Narula G, Dalvi K, Dhamne C, Moulik NR, Rajpal S, Patkar NV, Banavali S, Gujral S, Subramanian PG, Tembhare PR. 15-color highly sensitive flow cytometry assay for post anti-CD19 targeted therapy (anti-CD19-CAR-T and blinatumomab) measurable residual disease assessment in B-lymphoblastic leukemia/lymphoma: Real-world applicability and challenges. Eur J Haematol 2024; 112:122-136. [PMID: 37706583 DOI: 10.1111/ejh.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES Measurable residual disease (MRD) is the most relevant predictor of disease-free survival in B-cell acute lymphoblastic leukemia (B-ALL). We aimed to establish a highly sensitive flow cytometry (MFC)-based B-ALL-MRD (BMRD) assay for patients receiving anti-CD19 immunotherapy with an alternate gating approach and to document the prevalence and immunophenotype of recurrently occurring low-level mimics and confounding populations. METHODS We standardized a 15-color highly-sensitive BMRD assay with an alternate CD19-free gating approach. The study included 137 MRD samples from 43 relapsed/refractory B-ALL patients considered for anti-CD19 immunotherapy. RESULTS The 15-color BMRD assay with CD22/CD24/CD81/CD33-based gating approach was routinely applicable in 137 BM samples and could achieve a sensitivity of 0.0005%. MRD was detected in 29.9% (41/137) samples with 31.7% (13/41) of them showing <.01% MRD. Recurrently occurring low-level cells that showed immunophenotypic overlap with leukemic B-blasts included: (a) CD19+CD10+CD34+CD22+CD24+CD81+CD123+CD304+ plasmacytoid dendritic cells, (b) CD73bright/CD304bright/CD81bright mesenchymal stromal/stem cells (CD10+) and endothelial cells (CD34+CD24+), (c) CD22dim/CD34+/CD38dim/CD81dim/CD19-/CD10-/CD24- early lymphoid progenitor/precursor type-1 cells (ELP-1) and (d) CD22+/CD34+/CD10heterogeneous/CD38moderate/CD81moderate/CD19-/CD24- stage-0 B-cell precursors or ELP-2 cells. CONCLUSIONS We standardized a highly sensitive 15-color BMRD assay with a non-CD19-based gating strategy for patients receiving anti-CD19 immunotherapy. We also described the immunophenotypes of recurrently occurring low-level populations that can be misinterpreted as MRD in real-world practice.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Priyanka Dhende
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Simpy Raj
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Vruksha Shetty
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Jagruti Patil
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Aastha Kalra
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Kajal Dalvi
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Chetan Dhamne
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Nirmalya Roy Moulik
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Hematopathology Laboratory, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Elwafa RAHA, Bordiny ME, Salama M, Fawzy A, Omar OM. Cyclin D2 gene variance and expression level in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2023; 70:e30678. [PMID: 37731174 DOI: 10.1002/pbc.30678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Cyclin D2 (CCND2) is a crucial player in cell cycle regulation. CCND2 polymorphisms contribute to cancer predisposition. OBJECTIVES To evaluate the association of CCND2 rs3217927 single nucleotide polymorphisms (SNP) and its expression levels with acute lymphoblastic leukemia (ALL) susceptibility in Egyptian children and its potential prognostic role. METHODS The 5' nuclease allelic discrimination assay was used to evaluate the frequency of CCND2 rs3217927 SNP in 80 newly diagnosed children with ALL and 80 age- and sex-matched controls. CCND2 relative expression levels were determined by real-time quantitative polymerase chain reaction. RESULTS The genotype analysis revealed that the GG genotype and G allele were significantly more prevalent among ALL patients than controls (p ˂ .001). Regression analysis demonstrated that Egyptian children carrying only one G allele had about 31-fold increased risk to develop ALL compared to A allele carriers. CCND2 was overexpressed in ALL patients compared to controls (p < .001). The CCND2 overexpression was associated with the GG genotype and G allele (p < .001). Furthermore, G allele was an independent negative prognostic marker for central nervous system (CNS) involvement (odds ratio [OR] = 4.676; 95% confidence interval [CI]: 1.2-18.6), risk stratification (OR = 38; 95% CI: 7.7-188.2), and chemoresistance (OR = 9.864; 95% CI: 5.6-70.3) in ALL patients. CONCLUSIONS G allele of CCND2 rs3217927 SNP might be associated with increased risk for ALL in Egyptian children besides being an independent negative prognostic marker for their risk stratification and therapeutic outcome. CCND2 rs3217927 SNP genotyping might be used to demarcate ALL patients with aggressive disease phenotypes who may be candidate for alternative targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Magdy El Bordiny
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mostafa Salama
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Fawzy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omneya Magdy Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Nekoeian S, Ferdowsian S, Asgari Y, Azizi Z. Identification of Hub Genes Associated with Resistance to Prednisolone in Acute Lymphoblastic Leukemia Based on Weighted Gene Co-expression Network Analysis. Mol Biotechnol 2023; 65:1913-1922. [PMID: 36877306 DOI: 10.1007/s12033-023-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
Resistance against glucocorticoids which are used to reduce inflammation and treatment of a number of diseases, including leukemia, is known as the first stage of treatment failure in acute lymphoblastic leukemia. Since these drugs are the essential components of chemotherapy regimens for ALL and play an important role in stop of cell growth and induction of apoptosis, it is important to identify genes and the molecular mechanism that may affect glucocorticoid resistance. In this study, we used the GSE66705 dataset and weighted gene co-expression network analysis (WGCNA) to identify modules that correlated more strongly with prednisolone resistance in type B lymphoblastic leukemia patients. The PPI network was built using the DEGs key modules and the STRING database. Finally, we used the overlapping data to identify hub genes. out of a total of 12 identified modules by WGCNA, the blue module was find to have the most statistically significant correlation with prednisolone resistance and Nine genes including SOD1, CD82, FLT3, GART, HPRT1, ITSN1, TIAM1, MRPS6, MYC were recognized as hub genes Whose expression changes can be associated with prednisolone resistance. Enrichment analysis based on the MsigDB repository showed that the altered expressed genes of the blue module were mainly enriched in IL2_STAT5, KRAS, MTORC1, and IL6-JAK-STAT3 pathways, and their expression changes can be related to cell proliferation and survival. The analysis performed by the WGCNA method introduced new genes. The role of some of these genes was previously reported in the resistance to chemotherapy in other diseases. This can be used as clues to detect treatment-resistant (drug-resistant) cases in the early stages of diseases.
Collapse
Affiliation(s)
- Shahram Nekoeian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran.
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Popov A, Henze G, Roumiantseva J, Budanov O, Belevtsev M, Verzhbitskaya T, Boyakova E, Movchan L, Tsaur G, Fadeeva M, Lagoyko S, Zharikova L, Miakova N, Litvinov D, Khlebnikova O, Streneva O, Stolyarova E, Ponomareva N, Novichkova G, Fechina L, Aleinikova O, Karachunskiy A. One-point flow cytometric MRD measurement to identify children with excellent outcome after intermediate-risk BCP-ALL: results of the ALL-MB 2008 study. J Cancer Res Clin Oncol 2023; 149:4629-4637. [PMID: 36169717 DOI: 10.1007/s00432-022-04378-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Measurement of minimal residual disease (MRD) with multicolor flow cytometry (MFC) has become an important tool in childhood acute lymphoblastic leukemia (ALL), mainly to identify rapid responders and reduce their therapy intensity. Protocols of the Moscow-Berlin (MB) group use a comparatively low (for standard risk; SR) or moderate (for intermediate risk; ImR) treatment intensity from the onset, based on initial patient characteristics. Recently, we reported that 90% of SR patients-50% B cell precursor (BCP-ALL)-MFC-MRD negative at end of induction (EOI)-had 95% event-free survival (EFS). METHODS: In the present study, we applied this method to children with initial ImR features. RESULTS In study MB 2008, 1105 children-32% of BCP-ALL patients-were assigned to the ImR group. Of these, 227 were treated in clinics affiliated with MFC laboratories of the MB group network, and included in this MFC-MRD pilot study. A single-point MFC-MRD measurement at the EOI with the threshold of 0.01% identified 65% of patients-20% of all BCP-ALL patients-with EFS of 93.5%. CONCLUSION Taking both studies together, the combination of clinical parameters and a one-point MRD measurement identifies 70% of BCP-ALL patients with an excellent outcome after low- or moderate-intensity therapy and avoids overtreatment of a significant proportion of patients.
Collapse
Affiliation(s)
- Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation.
| | - Guenter Henze
- Department of Pediatric Oncology Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Roumiantseva
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Oleg Budanov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikhail Belevtsev
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Elena Boyakova
- Moscow City Blood Center Named After OK Gavrilov, Moscow, Russian Federation
| | - Liudmila Movchan
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Maria Fadeeva
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Svetlana Lagoyko
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Liudmila Zharikova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Dmitry Litvinov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | | | - Olga Streneva
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Elena Stolyarova
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Galina Novichkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Olga Aleinikova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| |
Collapse
|
11
|
Semchenkova A, Zhogov V, Zakharova E, Mikhailova E, Illarionova O, Larin S, Novichkova G, Karachunskiy A, Maschan M, Popov A. Flow cell sorting followed by PCR-based clonality testing may assist in questionable diagnosis and monitoring of acute lymphoblastic leukemia. Int J Lab Hematol 2023. [PMID: 36871952 DOI: 10.1111/ijlh.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Multicolor flow cytometry (MFC) has highly reliable and flexible algorithms for diagnosis and monitoring of acute lymphoblastic leukemia (ALL). However, MFC analysis can be affected by poor sample quality or novel therapeutic options (e.g., targeted therapies and immunotherapy). Therefore, an additional confirmation of MFC data may be needed. We propose a simple approach for validation of MFC findings in ALL by sorting questionable cells and analyzing immunoglobulin/T-cell receptor (IG/TR) gene rearrangements via EuroClonality-based multiplex PCR. PATIENTS AND METHODS We obtained questionable MFC results for 38 biological samples from 37 patients. In total, 42 cell populations were isolated by flow cell sorting for downstream multiplex PCR. Most of the patients (n = 29) had B-cell precursor ALL and were investigated for measurable residual disease (MRD); 79% of them received CD19-directed therapy (blinatumomab or CAR-T). RESULTS We established the clonal nature of 40 cell populations (95.2%). By using this technique, we confirmed very low MRD levels (<0.01% MFC-MRD). We also applied it to several ambiguous findings for diagnostic samples, including those with mixed-phenotype acute leukemia, and the results obtained impacted the final diagnosis. CONCLUSION We have demonstrated possibilities of a combined approach (cell sorting and PCR-based clonality assessment) to validate MFC findings in ALL. The technique is easy to implement in diagnostic and monitoring workflows, as it does not require isolation of a large number of cells and knowledge of individual clonal rearrangements. We believe it provides important information for further treatment.
Collapse
Affiliation(s)
- Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Zhogov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Zakharova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga Illarionova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Sergey Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Karachunskiy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
12
|
Pawinska-Wasikowska K, Bukowska-Strakova K, Surman M, Rygielska M, Sadowska B, Ksiazek T, Klekawka T, Wieczorek A, Skoczen S, Balwierz W. Go with the Flow—Early Assessment of Measurable Residual Disease in Children with Acute Lymphoblastic Leukemia Treated According to ALL IC-BFM2009. Cancers (Basel) 2022; 14:cancers14215359. [PMID: 36358778 PMCID: PMC9653819 DOI: 10.3390/cancers14215359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Monitoring of residual disease is a very important aspect of modern treatment approaches in many types of cancer. In acute leukemias in both children and adults, molecular and cytometric methods are used to assess the burden of leukemia at different points during therapy. Residual disease measured at the end of induction was shown to be the strongest predictor of outcome. Analyzing the outcomes of children with acute lymphoblastic leukemia (ALL), we aimed to establish the most informative cut-off and time point of assessment. Applying only the measurement of residual disease by flow cytometry along with genotypic findings, we managed to identify patients with a poor prognosis. Although new precise, molecular techniques as the next generation sequencing strategy are approaching daily clinical practice, flow cytometry is still a reliable, standardized method of residual disease detection. We may say ‘go with the flow’; thus, the assessment of residual disease by multiparametric flow cytometry is a proper method for the management of ALL patients according to risk-adapted therapies. Abstract Measurable residual disease (MRD) is a well-known tool for the evaluation of the early response to treatment in patients with acute lymphoblastic leukemia (ALL). In respect to predicting the relapse the most informative cut-off and time point of MRD measurement during therapy were evaluated in our study. Between 1 January 2013 and 31 December 2019, multiparametric flow cytometry (MFC) MRD was measured in the bone marrow of 140 children with ALL treated according to the ALL IC-BFM2009 protocol. The MRD cut-off of 0.1% and day 33, end of induction, were the most discriminatory for all patients. Patients with negative MRD on day 15 and 33 had a higher 5-year overall survival—OS (100%) and a higher relapse-free survival—RFS rate (97.6%) than those with positive levels of MRD (≥0.01%) at both time points (77.8% and 55.6%, p = 0.002 and 0.001, respectively). Most patients with residual disease below 0.1% on day 15 exhibit hyperdiploidy or ETV6-RUNX1 in ALL cells. Measurement of MRD at early time points can be used with simplified genetic analysis to better identify low and high-risk patients, allowing personalized therapies and further improvement in outcomes in pediatric ALL.
Collapse
Affiliation(s)
- Katarzyna Pawinska-Wasikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital, 30-663 Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology and Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Correspondence:
| | - Marta Surman
- Department of Clinical Immunology and Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Monika Rygielska
- Hematology Laboratory, Department of Pediatric Oncology and Hematology, University Children’s Hospital, 30-663 Krakow, Poland
| | - Beata Sadowska
- Department of Pediatric Oncology and Hematology, Cytogenetics and Molecular Genetics Laboratory, University Children’s Hospital, 30-663 Krakow, Poland
| | - Teofila Ksiazek
- Department of Pediatric Oncology and Hematology, Cytogenetics and Molecular Genetics Laboratory, University Children’s Hospital, 30-663 Krakow, Poland
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Tomasz Klekawka
- Department of Pediatric Oncology and Hematology, University Children’s Hospital, 30-663 Krakow, Poland
| | - Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital, 30-663 Krakow, Poland
| | - Szymon Skoczen
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital, 30-663 Krakow, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital, 30-663 Krakow, Poland
| |
Collapse
|
13
|
Shopsowitz KE, Liu L, Setiadi A, Al-Bakri M, Vercauteren S. Machine learning optimized multiparameter radar plots for B-cell acute lymphoblastic leukemia minimal residual disease analysis. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:342-352. [PMID: 35726954 DOI: 10.1002/cyto.b.22084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flow cytometry is widely used for B-ALL minimal residual disease (MRD) analysis given its speed, availability, and sensitivity; however, distinguishing B-lymphoblasts from regenerative B-cells is not always straightforward. Radar plots, which project multiple markers onto a single plot, have been applied to other MRD analyses. Here we aimed to develop optimized radar plots for B-ALL MRD analysis. METHODS We compiled Children's Oncology Group (COG) flow data from 20 MRD-positive and 9 MRD-negative B-ALL cases (enriched for hematogones) to create labeled training and test data sets with equal numbers of B-lymphoblasts, hematogones, and mature B-cells. We used an automated approach to create hundreds of radar plots and ranked them based on the ability of support vector machine (SVM) models to separate blasts from normal B-cells in the training data set. Top-performing radar plots were compared with PCA, t-SNE, and UMAP plots, evaluated with the test data set, and integrated into clinical workflows. RESULTS SVM area under the ROC curve (AUC) for COG tube 1/2 radar plots improved from 0.949/0.921 to 0.989/0.968 after optimization. Performance was superior to PCA plots and comparable to UMAP, but with better generalizability to new data. When integrated into an MRD workflow, optimized radar plots distinguished B-lymphoblasts from other CD19-positive populations. MRD quantified by radar plots and serial gating were strongly correlated. DISCUSSION Radar plots were successfully optimized to discriminate between diverse B-lymphoblast populations and non-malignant CD19-positive populations in B-ALL MRD analysis. Our novel radar plot optimization strategy could be adapted to other MRD panels and clinical scenarios.
Collapse
Affiliation(s)
- Kevin E Shopsowitz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Lorraine Liu
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
| | - Audi Setiadi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
| | - Maryam Al-Bakri
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Suzanne Vercauteren
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
| |
Collapse
|
14
|
Yonan A, Jacques C, Fletcher T, Suk-In T, Campbell RB. An Overview of Conventional Drugs and Nanotherapeutic Options for the Treatment and Management of Pediatric Acute Lymphoblastic Leukemia. Anticancer Agents Med Chem 2022; 22:3050-3061. [PMID: 35473534 DOI: 10.2174/1871520622666220426105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common form of pediatric cancer affecting the lymphoblast, a type of white blood cell found in the bone marrow. In this disease, the normal lymphoblast cells transform into leukemic cells and subsequently enter the bloodstream. Leukemic cells found in patients with ALL have shown differences in cholesterol uptake and utilization. Current treatment consists of chemotherapy, chimeric antigen receptor (CAR) therapy, and hematopoietic stem cell transplantation (HSCT). In addition, minimal residual disease (MRD) has become an effective tool for measuring treatment efficacy and the potential for relapse. Chemotherapy resistance remains a significant barrier in the treatment of ALL. Biomarkers such as an upregulated Akt signaling pathway and an overexpressed VLA-4 integrin-protein have been associated with drug resistance. Nanoparticles have been used to favorably alter the pharmacokinetic profile of conventional drug agents. These drug-delivery systems are designed to selectively deliver their drug payloads to desired targets. Therefore, nanoparticles offer advantages such as improved efficacy and reduced toxicity. This review highlights conventional treatment options, distinctive characteristics of pediatric ALL, therapeutic challenges encountered during therapy, and the key role that nanotherapeutics play in the treatment of ALL.
Collapse
Affiliation(s)
- Andre Yonan
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| | - Christopher Jacques
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608
| | - Tafaswa Fletcher
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| | - Thanaphorn Suk-In
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| | - Robert B Campbell
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| |
Collapse
|
15
|
Bartram J, Wright G, Adams S, Archer P, Brooks T, Edwards D, Hancock J, Knecht H, Inglott S, Mountjoy E, Roynane M, Wakeman S, Moppett J, Hubank M, Goulden N. High-throughput sequencing of peripheral blood for minimal residual disease monitoring in childhood precursor B-cell acute lymphoblastic leukemia: A prospective feasibility study. Pediatr Blood Cancer 2022; 69:e29513. [PMID: 34971078 DOI: 10.1002/pbc.29513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Minimal residual disease (MRD) measured on end-of-induction bone marrow (BM) is the most important biomarker for guiding therapy in pediatric acute lymphoblastic leukemia (ALL). Due to limited sensitivity of current approaches, peripheral blood (PB) is not a reliable source for identifying patients needing treatment changes. We sought to determine if high-throughput sequencing (HTS) (next-generation sequencing) of rearranged immunoglobulin and T-cell receptor genes can overcome this and be used to measure MRD in PB. PROCEDURE We employed a quantitative HTS approach to accurately measure MRD from one million cell equivalents of DNA from 17 PB samples collected at day 29 after induction therapy in patients with precursor B-cell ALL. We compared these results to the gold-standard real-time PCR result obtained from their paired BM samples, median follow-up 49 months. RESULTS With the increased sensitivity, detecting up to one abnormal cell in a million normal cells, we were able to detect MRD in the PB by HTS in all those patients requiring treatment intensification (MRD ≥ 0.005% in BM). CONCLUSION This is proof of principle that using the increased sensitivity of HTS, PB can be used to measure MRD and stratify children with ALL. The method is cost effective, rapid, accurate, and reproducible, with inherent advantages in children. Importantly, increasing the frequency testing by PB as opposed to intermittent BM sampling may allow extension of the dynamic range of MRD, giving a more complete picture of the kinetics of disease remission while improving relapse prediction and speed of detection.
Collapse
Affiliation(s)
- Jack Bartram
- Depatment of Haematology, Great Ormond Street Hospital for Children, London, UK.,Cancer Section, Institute of Child Health, University College London, UK
| | - Gary Wright
- Depatment of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Stuart Adams
- Depatment of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Archer
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, UK
| | - Tony Brooks
- UCL Genomics, Institute of Child Health, University College London, UK
| | - Darren Edwards
- Cancer Section, Institute of Child Health, University College London, UK
| | - Jerry Hancock
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, UK
| | - Henrik Knecht
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sarah Inglott
- Depatment of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Edward Mountjoy
- School of Social and Community Medicine, University of Bristol, UK
| | - Marie Roynane
- Depatment of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Stephanie Wakeman
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, UK
| | - John Moppett
- Department of Paediatric Haematology/Oncology, Royal Hospital for Children, Bristol, UK
| | - Mike Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton, UK
| | - Nick Goulden
- Depatment of Haematology, Great Ormond Street Hospital for Children, London, UK.,Trapehade, Monferran-Plavès, France
| |
Collapse
|
16
|
Huang YJ, Kuo MC, Jaing TH, Liu HC, Yeh TC, Chen SH, Lin TL, Yang CP, Wang PN, Sheen JM, Chang TK, Chang CH, Hu SF, Huang TY, Wang SC, Wu KH, Chiou SS, Hsiao CC, Shih LY. Comparison of Two Quantitative PCR-Based Assays for Detection of Minimal Residual Disease in B-Precursor Acute Lymphoblastic Leukemia Harboring Three Major Fusion Transcripts. J Mol Diagn 2021; 23:1373-1379. [PMID: 34325057 DOI: 10.1016/j.jmoldx.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Two quantitative PCR (qPCR)-based methods, for clonal Ig or T-cell receptor gene (Ig/TCR) rearrangements and for fusion transcripts, are widely used for the measurement of minimal residual disease (MRD) in patients with B-precursor acute lymphoblastic leukemia (ALL). MRD of bone marrow samples from 165 patients carrying the three major fusion transcripts, including 74 BCR-ABL1, 54 ETV6-RUNX1, and 37 TCF3-PBX1, was analyzed by using the two qPCR-based methods. The coefficient correlation of both methods was good for TCF3-PBX1 (R2 = 0.8088) and BCR-ABL1 (R2 = 0.8094) ALL and moderate for ETV6-RUNX1 (R2 = 0.5972). The concordance was perfect for TCF3-PBX1 ALL (97.2%), substantially concordant for ETV6-RUNX1 ALL (87.1%), and only moderate for BCR-ABL1 ALL (70.6%). The discordant MRD, positive for only one method with a difference greater than one log, was found in 4 of 93 samples (4.3%) with ETV6-RUNX1, 31 of 245 samples (12.7%) with BCR-ABL1, and 0 of TCF3-PBX1 ALL. None of the eight nontransplanted patients with BCR-ABL1-MRD (+)/Ig/TCR-MRD (-) with a median follow-up time of 73.5 months had hematologic relapses. Our study showed an excellent MRD concordance between the two qPCR-based methods in TCF3-PBX1 ALL, whereas qPCR for Ig/TCR is more reliable in BCR-ABL1 ALL.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tang-Her Jaing
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Shih-Hsiang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chao-Ping Yang
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jiunn-Ming Sheen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Te-Kau Chang
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Chia-Hui Chang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Fen Hu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Cheng Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Seth N, Mahajan V, Kedia S, Sutar A, Sehgal K. Minimal Residual Disease (MRD) detection in B- ALL – Experience of a standalone flow cytometry laboratory. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Cherian S, Soma LA. How I Diagnose Minimal/Measurable Residual Disease in B Lymphoblastic Leukemia/Lymphoma by Flow Cytometry. Am J Clin Pathol 2021; 155:38-54. [PMID: 33236071 DOI: 10.1093/ajcp/aqaa242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Assessment for minimal/measurable residual disease (MRD) is a powerful prognostic factor in B lymphoblastic leukemia/lymphoma (B-LL/L) that is quickly becoming standard of care in assessing patients with B-LL/L posttherapy. MRD can be assessed using methodologies including flow cytometry and molecular genetics, with the former being rapid, relatively inexpensive, and widely applicable in many hematopathology/flow cytometry laboratories. METHODS This article presents an approach to MRD detection in B-LL/L by flow cytometry through case presentations with illustration of several potential pitfalls. We review normal maturation patterns, antigens used for assessment, flow panels that can be utilized, considerations to be made during therapy, and clinical impact. The benefits and drawbacks when using the "different from normal" and "leukemia associated phenotype" approaches are considered. RESULTS Evaluation for MRD in B-LL/L by flow cytometry relies on a knowledge of normal immunophenotypic patterns associated with B-cell maturation in states of rest and marrow regeneration so that one can identify patterns of antigen expression that differentiate abnormal, leukemic populations from regenerating hematogones or B-cell precursors. The nature of therapy can affect normal patterns, a phenomenon especially important to take into consideration given the increased use of targeted therapies in the treatment of B-LL/L. CONCLUSIONS Flow cytometry is widely available in many laboratories and is a cost-effective way to evaluate for B-LL/L MRD. However, panel validation and interpreter education are crucial for accurate assessment.
Collapse
Affiliation(s)
- Sindhu Cherian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Lorinda A Soma
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| |
Collapse
|
19
|
Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting. Leukemia 2020; 35:1894-1906. [PMID: 33318611 PMCID: PMC8257490 DOI: 10.1038/s41375-020-01100-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022]
Abstract
PCR of TCR/Ig gene rearrangements is considered the method of choice for minimal residual disease (MRD) quantification in BCP-ALL, but flow cytometry analysis of leukemia-associated immunophenotypes (FCM-MRD) is faster and biologically more informative. FCM-MRD performed in 18 laboratories across seven countries was used for risk stratification of 1487 patients with BCP-ALL enrolled in the NOPHO ALL2008 protocol. When no informative FCM-marker was available, risk stratification was based on real-time quantitative PCR. An informative FCM-marker was found in 96.2% and only two patients (0.14%) had non-informative FCM and non-informative PCR-markers. The overall 5-year event-free survival was 86.1% with a cumulative incidence of relapse (CIR5y) of 9.5%. FCM-MRD levels on days 15 (HzR 4.0, p < 0.0001), 29 (HzR 2.7, p < 0.0001), and 79 (HzR 3.5, p < 0.0001) associated with hazard of relapse adjusted for age, cytogenetics, and WBC. The early (day 15) response associated with CIR5y adjusted for day 29 FCM-MRD, with higher levels in adults (median 2.4 × 10−2 versus 5.2 × 10−3, p < 0.0001). Undetectable FCM- and/or PCR-MRD on day 29 identified patients with a very good outcome (CIR5y = 3.2%). For patients who did not undergo transplantation, day 79 FCM-MRD > 10−4 associated with a CIR5y = 22.1%. In conclusion, FCM-MRD performed in a multicenter setting is a clinically useful method for MRD-based treatment stratification in BCP-ALL.
Collapse
|
20
|
Chatterjee G, Sriram H, Ghogale S, Deshpande N, Khanka T, Panda D, Pradhan SN, Girase K, Narula G, Dhamane C, Malik NR, Banavali S, Patkar NV, Gujral S, Subramanian PG, Tembhare PR. Immunophenotypic shift in the B-cell precursors from regenerating bone marrow samples: A critical consideration for measurable residual disease assessment in B-lymphoblastic leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:434-445. [PMID: 32896101 DOI: 10.1002/cyto.b.21951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023]
Abstract
Accurate knowledge of expression patterns/levels of commonly used MRD markers in regenerative normal-B-cell-precursors (BCP) is highly desirable to distinguish leukemic-blasts from regenerative-BCP for multicolor flow cytometry (MFC)-based measurable residual disease (MRD) assessment in B-lymphoblastic leukemia (B-ALL). However, the data highlighting therapy-related immunophenotypic-shift in regenerative-BCPs is scarce and limited to small cohort. Herein, we report the in-depth evaluation of immunophenotypic shift in regenerative-BCPs from a large cohort of BALL-MRD samples. Ten-color MFC-MRD analysis was performed in pediatric-BALL at the end-of-induction (EOI), end-of-consolidation (EOC), and subsequent-follow-up (SFU) time-points. We studied normalized-mean fluorescent intensity (nMFI) and coefficient-of-variation of immunofluorescence (CVIF) of CD10, CD19, CD20, CD34, CD38, and CD45 expression in regenerative-BCP (early, BCP1 and late, BCP2) from 200 BALL-MRD samples, and compared them with BCP from 15 regenerating control (RC) TALL-MRD samples and 20 treatment-naïve bone-marrow control (TNSC) samples. Regenerative-BCP1 showed downregulation in CD10 and CD34 expression with increased CVIF and reduced nMFI (p < 0.001), upregulation of CD20 with increased nMFI (p = 0.014) and heterogeneous CD45 expression with increased CVIF (p < 0.001). Immunophenotypic shift was less pronounced in the BCP2 compared to BCP1 compartment with increased CVIF in all but CD45 (p < 0.05) and reduced nMFI only in CD45 expression (p = 0.005). Downregulation of CD10/CD34 and upregulation of CD20 was higher at EOI than EOC and SFU time-points (p < 0.001). Regenerative-BCPs are characterized by the significant immunophenotypic shift in commonly used B-ALL-MRD markers, especially CD10 and CD34 expression, as compared to treatment-naïve BCPs. Therefore, the templates/database for BMRD analysis must be developed using regenerative-BCP.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Devasis Panda
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Shiv Narayan Pradhan
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Chetan Dhamane
- Department of Pediatric Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Nirmlya Roy Malik
- Department of Pediatric Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, Tata Memorial Center, HBNI University, Mumbai, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| |
Collapse
|
21
|
Microfluidic Chip based direct triple antibody immunoassay for monitoring patient comparative response to leukemia treatment. Biomed Microdevices 2020; 22:48. [PMID: 32661698 DOI: 10.1007/s10544-020-00503-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a time and cost-efficient microfluidic chip for screening the leukemia cells having three specific antigens. In this method, the target blast cells are double sorted with immunomagnetic beads and captured by the 3rd antibody immobilized on the gold surface in a microfluidic chip. The captured blast cells in the chip were imaged using a bright-field optical microscope and images were analyzed to quantify the cells. First sorting was performed with nano size immunomagnetic beads and followed by 2nd sorting where micron size immunomagnetic beads were used. The low-cost microfluidic platform is made of PMMA and glass including micro size gold pads. The developed microfluidic platform was optimized with cultured B type lymphoblast cells and tested with the samples of leukemia patients. The 8 bone marrow samples of 4 leukemia patients on the initial diagnosis and on the 15th day after the start of the chemotherapy treatment were tested both with the developed microfluidic platform and the flow cytometry. A 99% statistical agreement between the two methods shows that the microfluidic chip is able to monitor the decrease in the number of blast cells due to the chemotherapy. The experiments with the patient samples demonstrate that the developed system can perform relative measurements and have a potential to monitor the patient response to the applied therapy and to enable personalized dose adjustment.
Collapse
|
22
|
Egyed B, Kutszegi N, Sági JC, Gézsi A, Rzepiel A, Visnovitz T, Lőrincz P, Müller J, Zombori M, Szalai C, Erdélyi DJ, Kovács GT, Semsei ÁF. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med 2020; 18:250. [PMID: 32571344 PMCID: PMC7310470 DOI: 10.1186/s12967-020-02415-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Refractory central nervous system (CNS) involvement is among the major causes of therapy failure in childhood acute leukemia. Applying contemporary diagnostic methods, CNS disease is often underdiagnosed. To explore more sensitive and less invasive CNS status indicators, we examined microRNA (miR) expressions and extracellular vesicle (EV) characteristics. Methods In an acute lymphoblastic leukemia (ALL) discovery cohort, 47 miRs were screened using Custom TaqMan Advanced Low-Density Array gene expression cards. As a validation step, a candidate miR family was further scrutinized with TaqMan Advanced miRNA Assays on serial cerebrospinal fluid (CSF), bone marrow (BM) and peripheral blood samples with different acute leukemia subtypes. Furthermore, small EV-rich fractions were isolated from CSF and the samples were processed for immunoelectron microscopy with anti-CD63 and anti-CD81 antibodies, simultaneously. Results Regarding the discovery study, principal component analysis identified the role of miR-181-family (miR-181a-5p, miR-181b-5p, miR-181c-5p) in clustering CNS-positive (CNS+) and CNS-negative (CNS‒) CSF samples. We were able to validate miR-181a expression differences: it was about 52 times higher in CSF samples of CNS+ ALL patients compared to CNS‒ cases (n = 8 vs. n = 10, ΔFC = 52.30, p = 1.5E−4), and CNS+ precursor B cell subgroup also had ninefold higher miR-181a levels in their BM (p = 0.04). The sensitivity of CSF miR-181a measurement in ALL highly exceeded those of conventional cytospin in the initial diagnosis of CNS leukemia (90% vs. 54.5%). Pellet resulting from ultracentrifugation of CNS+ CSF samples of ALL patients showed atypical CD63−/CD81− small EVs in high density by immunoelectron microscopy. Conclusions After validating in extensive cohorts, quantification of miR-181a or a specific EV subtype might provide novel tools to monitor CNS disease course and further adjust CNS-directed therapy in pediatric ALL.
Collapse
Affiliation(s)
- Bálint Egyed
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Nóra Kutszegi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - András Gézsi
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Department of Measurements and Information Systems, Budapest University of Technology and Economics, 2 Magyar tudosok korutja, Budapest, 1117, Hungary
| | - Andrea Rzepiel
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, 1/c Pázmány Promenade, Budapest, 1117, Hungary
| | - Judit Müller
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Marianna Zombori
- Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Gábor T Kovács
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.
| |
Collapse
|
23
|
Toscan CE, Jing D, Mayoh C, Lock RB. Reversal of glucocorticoid resistance in paediatric acute lymphoblastic leukaemia is dependent on restoring BIM expression. Br J Cancer 2020; 122:1769-1781. [PMID: 32242100 PMCID: PMC7283241 DOI: 10.1038/s41416-020-0824-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukaemia (ALL) is the most common paediatric malignancy. Glucocorticoids form a critical component of chemotherapy regimens and resistance to glucocorticoid therapy is predictive of poor outcome. We have previously shown that glucocorticoid resistance is associated with upregulation of the oncogene C-MYC and failure to induce the proapoptotic gene BIM. METHODS A high-throughput screening (HTS) campaign was carried out to identify glucocorticoid sensitisers against an ALL xenograft derived from a glucocorticoid-resistant paediatric patient. Gene expression analysis was carried out using Illumina microarrays. Efficacy, messenger RNA and protein analysis were carried out by Resazurin assay, reverse transcription-PCR and immunoblotting, respectively. RESULTS A novel glucocorticoid sensitiser, 2-((4,5-dihydro-1H-imidazol-2-yl)thio)-N-isopropyl-N-phenylacetamide (GCS-3), was identified from the HTS campaign. The sensitising effect was specific to glucocorticoids and synergy was observed in a range of dexamethasone-resistant and dexamethasone-sensitive xenografts representative of B-ALL, T-ALL and Philadelphia chromosome-positive ALL. GCS-3 in combination with dexamethasone downregulated C-MYC and significantly upregulated BIM expression in a glucocorticoid-resistant ALL xenograft. The GCS-3/dexamethasone combination significantly increased binding of the glucocorticoid receptor to a novel BIM enhancer, which is associated with glucocorticoid sensitivity. CONCLUSIONS This study describes the potential of the novel glucocorticoid sensitiser, GCS-3, as a biological tool to interrogate glucocorticoid action and resistance.
Collapse
Affiliation(s)
- Cara E Toscan
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Duohui Jing
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Hendricks CL, Buldeo S, Pillay D, Naidoo A, Thejpal R, Rapiti N, Neethling B, Goga Y, van Staaden H. Comparing morphology, flow cytometry and molecular genetics in the assessment of minimal residual disease in children with B-acute lymphoblastic leukaemia (B-ALL). SOUTH AFRICAN JOURNAL OF ONCOLOGY 2019. [DOI: 10.4102/sajo.v3i0.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Jovanovska A, Martinova K, Kocheva S, Trajkova-Antevska Z, Coneska-Jovanova B, Panovska-Stavridis I, Stankovikj S, Trajkova S, Dimovski A. Clinical Significance of Minimal Residual Disease at the End of Remission Induction Therapy in Childhood Acute Lymphoblastic Leukemia. Open Access Maced J Med Sci 2019; 7:2818-2823. [PMID: 31844443 PMCID: PMC6901875 DOI: 10.3889/oamjms.2019.752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Detection of minimal residual disease (MRD) in the early phase of therapy is the most powerful predictor of relapse risk in children with acute lymphoblastic leukaemia (ALL). AIM We aimed to determine the significance of MRD at the end of remission induction therapy in the prediction of treatment outcome in children with ALL. METHODS Sixty-four consecutive patients aged 1-14 years with newly diagnosed ALL were enrolled in this study from January 2010 to October 2017. All patients were treated according to the ALL IC BFM 2002 protocol. MRD was detected at the end of remission induction therapy (day 33) by multiparameter 6-colour flow cytometry performed on bone marrow specimens with a sensitivity of 0.01%. RESULTS Overall, 42.2% of patients had detectable MRD on day 33 of therapy. MRD measurements were not significantly related to presenting characteristics but were associated with a poorer blast clearance on day 8 and 15 of remission induction therapy. Patients with negative MRD status on day 33 had a 5-year event-free survival of 94.6% compared with 76.1% for those with positive MRD status (P = 0.044). CONCLUSION MRD levels at the end of remission induction therapy measured by multiparameter flow cytometry have clinical significance in childhood ALL. High levels of MRD are strongly related to poor treatment outcome.
Collapse
Affiliation(s)
- Aleksandra Jovanovska
- Department of Hematology and Oncology, University Clinic for Children`s Diseases, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Kata Martinova
- Department of Hematology and Oncology, University Clinic for Children`s Diseases, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Svetlana Kocheva
- Department of Hematology and Oncology, University Clinic for Children`s Diseases, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Zorica Trajkova-Antevska
- Department of Hematology and Oncology, University Clinic for Children`s Diseases, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | | | - Irina Panovska-Stavridis
- University Clinic for Hematology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Svetlana Stankovikj
- University Clinic for Hematology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Sanja Trajkova
- University Clinic for Hematology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Aleksandar Dimovski
- Faculty of Pharmacy, Ss Cyril and Methodius University of Skopje, Skopje, Skopje, Republic of Macedonia
| |
Collapse
|
26
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
27
|
Jain P, Gu J, Kanagal-Shamanna R, Tang Z, Patel KP, Yao H, Fang L, Bao HY, Liu CH, Lin P, Medeiros L, Lu X. Clinical implications of cytogenetic heterogeneity in Philadelphia chromosome positive (Ph+) adult B cell acute lymphoblastic leukemia following tyrosine kinase inhibitors and chemotherapy regimens. Leuk Res 2019; 84:106176. [DOI: 10.1016/j.leukres.2019.106176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/28/2023]
|
28
|
Rocha JMC, Xavier SG, Souza MEDL, Murao M, de Oliveira BM. Comparison between flow cytometry and standard PCR in the evaluation of MRD in children with acute lymphoblastic leukemia treated with the GBTLI LLA - 2009 protocol. Pediatr Hematol Oncol 2019; 36:287-301. [PMID: 31287348 DOI: 10.1080/08880018.2019.1636168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Minimal residual disease (MRD) monitoring is of prognostic importance in childhood acute lymphoblastic leukemia (ALL). The detection of immunoglobulin and T-cell receptor gene rearrangements by real-time quantitative PCR (RT-PCR) is considered the gold standard for this evaluation. However, more accessible methods also show satisfactory performance. This study aimed to compare MRD analysis by four-color flow cytometry (FC) and qualitative standard PCR on days 35 and 78 of chemotherapy and to correlate these data with patients' clinical characteristics. Forty-two children with a recent diagnosis of ALL, admitted to a public hospital in Brazil for treatment in accordance with the Brazilian Childhood Cooperative Group for ALL Treatment (GBTLI LLA-2009), were included. Bone marrow samples collected at diagnosis and on days 35 and 78 of treatment were analyzed for the immunophenotypic characterization of blasts by FC and for the detection of clonal rearrangements by standard PCR. Paired analyses were performed in 61/68 (89.7%) follow-up samples, with a general agreement of 88.5%. Disagreements were resolved by RT-PCR, which evidenced one false-negative and four false-positive results in FC, as well as two false-negative results in PCR. Among the prognostic factors, a significant association was found only between T-cell lineage and MRD by standard PCR. These results show that FC and standard PCR produce similar results in MRD detection of childhood ALL and that both methodologies may be useful in the monitoring of disease treatment, especially in regions with limited financial resources.
Collapse
Affiliation(s)
| | | | | | - Mitiko Murao
- Federal University of Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | | |
Collapse
|
29
|
Reiter M, Diem M, Schumich A, Maurer-Granofszky M, Karawajew L, Rossi JG, Ratei R, Groeneveld-Krentz S, Sajaroff EO, Suhendra S, Kampel M, Dworzak MN. Automated Flow Cytometric MRD Assessment in Childhood Acute B- Lymphoblastic Leukemia Using Supervised Machine Learning. Cytometry A 2019; 95:966-975. [PMID: 31282025 DOI: 10.1002/cyto.a.23852] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
Minimal residual disease (MRD) as measured by multiparameter flow cytometry (FCM) is an independent and strong prognostic factor in B-cell acute lymphoblastic leukemia (B-ALL). However, reliable flow cytometric detection of MRD strongly depends on operator skills and expert knowledge. Hence, an objective, automated tool for reliable FCM-MRD quantification, able to overcome the technical diversity and analytical subjectivity, would be most helpful. We developed a supervised machine learning approach using a combination of multiple Gaussian Mixture Models (GMM) as a parametric density model. The approach was used for finding the weights of a linear combination of multiple GMMs to represent new, "unseen" samples by an interpolation of stored samples. The experimental data set contained FCM-MRD data of 337 bone marrow samples collected at day 15 of induction therapy in three different laboratories from pediatric patients with B-ALL for which accurate, expert-set gates existed. We compared MRD quantification by our proposed GMM approach to operator assessments, its performance on data from different laboratories, as well as to other state-of-the-art automated read-out methods. Our proposed GMM-combination approach proved superior over support vector machines, deep neural networks, and a single GMM approach in terms of precision and average F 1 -scores. A high correlation of expert operator-based and automated MRD assessment was achieved with reliable automated MRD quantification (F 1 -scores >0.5 in more than 95% of samples) in the clinically relevant range. Although best performance was found, if test and training samples were from the same system (i.e., flow cytometer and staining panel; lowest median F 1 -score 0.92), cross-system performance remained high with a median F 1 -score above 0.85 in all settings. In conclusion, our proposed automated approach could potentially be used to assess FCM-MRD in B-ALL in an objective and standardized manner across different laboratories. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Michael Reiter
- Immunological Diagnostics, Children's Cancer Research Institute, Vienna, Austria.,Computer Vision Lab, Faculty of Informatics, Technical University of Vienna, Vienna, Austria
| | - Markus Diem
- Immunological Diagnostics, Children's Cancer Research Institute, Vienna, Austria.,Computer Vision Lab, Faculty of Informatics, Technical University of Vienna, Vienna, Austria
| | - Angela Schumich
- Immunological Diagnostics, Children's Cancer Research Institute, Vienna, Austria
| | | | - Leonid Karawajew
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jorge G Rossi
- Cellular Immunology Laboratory, Hospital de Pediatria "Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Richard Ratei
- Department of Hematology, Oncology and Tumor Immunology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | | | - Elisa O Sajaroff
- Cellular Immunology Laboratory, Hospital de Pediatria "Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | | | - Martin Kampel
- Computer Vision Lab, Faculty of Informatics, Technical University of Vienna, Vienna, Austria
| | - Michael N Dworzak
- Immunological Diagnostics, Children's Cancer Research Institute, Vienna, Austria.,Labdia Labordiagnostik GmbH, Vienna, Austria
| | | |
Collapse
|
30
|
Tembhare PR, Subramanian PG PG, Ghogale S, Chatterjee G, Patkar NV, Gupta A, Shukla R, Badrinath Y, Deshpande N, Narula G, Rodrigues P, Girase K, Dhaliwal D, Prasad M, Shetty D, Banavali S, Gujral S. A High‐Sensitivity 10‐Color Flow Cytometric Minimal Residual Disease Assay in B‐Lymphoblastic Leukemia/Lymphoma Can Easily Achieve the Sensitivity of 2‐in‐10
6
and Is Superior to Standard Minimal Residual Disease Assay: A Study of 622 Patients. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:57-67. [DOI: 10.1002/cyto.b.21831] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Prashant R. Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | | | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Nikhil V. Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Avinash Gupta
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Rahul Shukla
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Yajamanam Badrinath
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial CenterTata Memorial Hospital Mumbai Maharashtra 400012 India
| | - Pearl Rodrigues
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Dilshad Dhaliwal
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Maya Prasad
- Department of Pediatric Oncology, Tata Memorial CenterTata Memorial Hospital Mumbai Maharashtra 400012 India
| | - Dhanalaxmi Shetty
- Department of Cancer Cytogenetics, ACTREC, Tata Memorial CenterHBNI University Mumbai Maharashtra 410210 India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial CenterTata Memorial Hospital Mumbai Maharashtra 400012 India
| | - Sumeet Gujral
- Hematopathology LaboratoryTata Memorial Hospital, Tata Memorial Center Mumbai Maharashtra 400012 India
| |
Collapse
|
31
|
Rastogi P, Sachdeva MUS. Flow Cytometric Minimal Residual Disease Analysis in Acute Leukemia: Current Status. Indian J Hematol Blood Transfus 2019; 36:3-15. [PMID: 32174688 DOI: 10.1007/s12288-019-01118-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/26/2019] [Indexed: 02/02/2023] Open
Abstract
Minimal residual disease (MRD) analysis for patients of acute leukemia has evolved as a significant prognostic factor. Based on the MRD results, the cases are risk-stratified after induction chemotherapy, and an alteration in further management is made to yield maximal therapeutic benefits. The two primary methodologies for MRD detection are multi-parameter flow cytometry (MFC) and polymerase chain reaction. MFC identifies the MRD based on characteristic 'leukemia-associated immunophenotypes' on the residual leukemia cells. MRD analysis by MFC is most frequently done at the post-induction stage of treatment and often can achieve a sensitivity of detecting one leukemic cell in 10,000 normal cells, or even higher at times. This review outlines the technical aspects and provides inputs on standard antibody panels used for MRD detection in B-, T-lineage acute lymphoblastic leukemias, and acute myeloid leukemia.
Collapse
Affiliation(s)
- Pulkit Rastogi
- 1Department of Histopathology, Level 5, Research Block A, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012 India
| | - Man Updesh Singh Sachdeva
- 2Department of Hematology, Level 5, Research Block A, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012 India
| |
Collapse
|
32
|
Abstract
Immunophenotyping by flow cytometry is an important component in the diagnostic evaluation of patients with acute lymphoblastic leukemia. This technique further permits the detection of minimal residual disease after therapy, a robust prognostic factor that may guide individualized treatment. We describe here laboratory methods for both the initial characterization of lymphoblasts at diagnosis, and the detection of rare leukemic lymphoblasts after treatment. In addition to antibody combinations suitable for diagnosis and detection of minimal residual disease, we describe procedures for peripheral blood and bone marrow sample preparation, procedures for labeling of cell-surface and intracellular proteins with fluorochrome-conjugated antibodies, and approaches to analysis of immunophenotypic data.
Collapse
Affiliation(s)
- Joseph A DiGiuseppe
- Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, CT, USA.
| | - Jolene L Cardinali
- Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
33
|
İçöz K, Gerçek T, Murat A, Özcan S, Ünal E. Capturing B type acute lymphoblastic leukemia cells using two types of antibodies. Biotechnol Prog 2018; 35:e2737. [PMID: 30353996 DOI: 10.1002/btpr.2737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 11/07/2022]
Abstract
One way to monitor minimal residual disease (MRD) is to screen cells for multiple surface markers using flow cytometry. In order to develop an alternative microfluidic based method, isolation of B type acute lymphoblastic cells using two types of antibodies should be investigated. The immunomagnetic beads coated with various antibodies are used to capture the B type acute lymphoblastic cells. Single beads, two types of beads and surface immobilized antibody were used to measure the capture efficiency. Both micro and nanosize immunomagnetic beads can be used to capture B type acute lymphoblastic cells with a minimum efficiency of 94% and maximum efficiency of 98%. Development of a microfluidic based biochip incorporating immunomagnetic beads and surface immobilized antibodies for monitoring MRD can be an alternative to current cost and time inefficient laboratory methods. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2737, 2019.
Collapse
Affiliation(s)
- Kutay İçöz
- BioMINDS (Bio Micro/Nano Devices and Sensors) Lab, Dept. of Electrical and Electronics Engineering, Abdullah Gül University, Kayseri, Turkey
- Bioengineering Dept., Abdullah Gül University, Kayseri, Turkey
| | - Tayyibe Gerçek
- BioMINDS (Bio Micro/Nano Devices and Sensors) Lab, Dept. of Electrical and Electronics Engineering, Abdullah Gül University, Kayseri, Turkey
- Bioengineering Dept., Abdullah Gül University, Kayseri, Turkey
| | - Ayşegül Murat
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Servet Özcan
- Biology Dept., Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ekrem Ünal
- Pediatric Oncology Dept., Erciyes University, Kayseri, Turkey
| |
Collapse
|
34
|
Gratama JW. Issue highlights - May 2016. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 90:244-6. [PMID: 27192087 DOI: 10.1002/cyto.b.21379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
DiGiuseppe JA, Cardinali JL, Rezuke WN, Pe’er D. PhenoGraph and viSNE facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2018; 94:588-601. [PMID: 28865188 PMCID: PMC5834343 DOI: 10.1002/cyto.b.21588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/23/2017] [Accepted: 08/29/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Flow cytometric identification of neoplastic T-cell populations is complicated by the wide range of phenotypic abnormalities in T-cell neoplasia, and the diverse repertoire of reactive T-cell phenotypes. We evaluated whether a recently described clustering algorithm, PhenoGraph, and dimensionality-reduction algorithm, viSNE, might facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data. METHODS We applied PhenoGraph and viSNE to peripheral blood mononuclear cells labeled with a single 8-color T/NK-cell antibody combination. Individual peripheral blood samples containing either a T-cell neoplasm or reactive lymphocytosis were analyzed together with a cohort of 10 normal samples, which established the location and identity of normal mononuclear-cell subsets in viSNE displays. RESULTS PhenoGraph-derived subpopulations from the normal samples formed regions of phenotypic similarity in the viSNE display describing normal mononuclear-cell subsets, which correlated with those obtained by manual gating (r2 = 0.99, P < 0.0001). In 24 of 24 cases of T-cell neoplasia with an aberrant phenotype, compared with 4 of 17 cases of reactive lymphocytosis (P = 1.4 × 10-7 , Fisher Exact test), PhenoGraph-derived subpopulations originating exclusively from the abnormal sample formed one or more distinct phenotypic regions in the viSNE display, which represented the neoplastic T cells, and reactive T-cell subpopulations not present in the normal cohort, respectively. The numbers of neoplastic T cells identified using PhenoGraph/viSNE correlated with those obtained by manual gating (r2 = 0.99; P < 0.0001). CONCLUSIONS PhenoGraph and viSNE may facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data. © 2017 Clinical Cytometry Society.
Collapse
Affiliation(s)
- Joseph A. DiGiuseppe
- Department of Pathology & Laboratory Medicine, Hartford Hospital, Hartford, Connecticut,Correspondence to: Joseph A. DiGiuseppe, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St, Hartford, CT 06102-5037, USA or Dana Pe’er, Program in Computational and Systems Biology, Sloan Kettering Institute, 417 East 68th Street, New York, NY 10065, USA.
| | - Jolene L. Cardinali
- Department of Pathology & Laboratory Medicine, Hartford Hospital, Hartford, Connecticut
| | - William N. Rezuke
- Department of Pathology & Laboratory Medicine, Hartford Hospital, Hartford, Connecticut
| | - Dana Pe’er
- Program in Computational and Systems Biology, Sloan Kettering Institute, New York, New York,Correspondence to: Joseph A. DiGiuseppe, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St, Hartford, CT 06102-5037, USA or Dana Pe’er, Program in Computational and Systems Biology, Sloan Kettering Institute, 417 East 68th Street, New York, NY 10065, USA.
| |
Collapse
|
36
|
Gaipa G, Buracchi C, Biondi A. Flow cytometry for minimal residual disease testing in acute leukemia: opportunities and challenges. Expert Rev Mol Diagn 2018; 18:775-787. [DOI: 10.1080/14737159.2018.1504680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Gaipa
- Department of Pediatrics, University of Milano-Bicocca, Fondazione Tettamanti - Centro Ricerca M.Tettamanti, Monza, Italy
| | - Chiara Buracchi
- Department of Pediatrics, University of Milano-Bicocca, Fondazione Tettamanti - Centro Ricerca M.Tettamanti, Monza, Italy
| | - A Biondi
- Department of Pediatrics, University of Milano-Bicocca, Fondazione Tettamanti - Centro Ricerca M.Tettamanti, Monza, Italy
- Fondazione MBBM/Ospedale San Gerardo - Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
37
|
Béné MC, Eveillard M. Evaluation of minimal residual disease in childhood ALL. Int J Lab Hematol 2018; 40 Suppl 1:104-108. [DOI: 10.1111/ijlh.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 11/26/2022]
|
38
|
Neuropilin-1/CD304 Expression by Flow Cytometry in Pediatric Precursor B-Acute Lymphoblastic Leukemia: A Minimal Residual Disease and Potential Prognostic Marker. J Pediatr Hematol Oncol 2018; 40:200-207. [PMID: 29200164 DOI: 10.1097/mph.0000000000001008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flow cytometry (FCM) is used for quantification of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL) through discriminating leukemic B-lymphoblasts from normal B-cell precursor counterparts "hematogones." Neuropilin-1 (NRP-1)/CD304 is a vascular endothelial growth factor receptor implicated in the progression of hematological malignancies. We evaluated NRP-1/CD304 as MRD and prognostic marker in pediatric precursor B-ALL using FCM. Seventy children with precursor B-ALL and 40 control children were enrolled. CD304 percentage and fluorescence intensity were significantly higher in precursor B-ALL at diagnosis compared with controls. In total, 28 of 70 (40%) precursor B-ALL patients at diagnosis were CD304 (group A), whereas 42/70 (60%) patients were CD304 (group B). Group A showed higher incidence of lymphadenopathy and TEL-AML1 fusion gene than group B. CD304 was reevaluated in group A patients at day 28 postinduction chemotherapy which revealed 12/28 (42.9%) patients with persistent CD304 expression (MRD; group A1) and 16/28 (57.1%) patients who turned CD304 (MRD; group A2). At diagnosis, group A1 showed lower incidence of TEL-AML1 fusion gene and higher risk stratification than group A2. NRP-1/CD304 expression by FCM is efficient in discriminating leukemic B-lymphoblasts from hematogones, a stable leukemia-associated phenotype for MRD monitoring, and a putative poor prognostic marker in pediatric precursor B-ALL.
Collapse
|
39
|
Sędek Ł, Theunissen P, Sobral da Costa E, van der Sluijs-Gelling A, Mejstrikova E, Gaipa G, Sonsala A, Twardoch M, Oliveira E, Novakova M, Buracchi C, van Dongen JJM, Orfao A, van der Velden VHJ, Szczepański T. Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia. J Immunol Methods 2018. [PMID: 29530508 DOI: 10.1016/j.jim.2018.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Optimal discrimination between leukemic blasts and normal B-cell precursors (BCP) is critical for treatment monitoring in BCP acute lymphoblastic leukemia (ALL); thus identification of markers differentially expressed on normal BCP and leukemic blasts is required. METHODS Multicenter analysis of CD73, CD86 and CD304 expression levels was performed in 282 pediatric BCP-ALL patients vs. normal bone marrow BCP, using normalized median fluorescence intensity (nMFI) values. RESULTS CD73 was expressed at abnormally higher levels (vs. pooled normal BCP) at diagnosis in 71/108 BCP-ALL patients (66%), whereas CD304 and CD86 in 119/202 (59%) and 58/100 (58%) patients, respectively. Expression of CD304 was detected at similar percentages in common-ALL and pre-B-ALL, while found at significantly lower frequencies in pro-B-ALL. A significant association (p = 0.009) was found between CD304 expression and the presence of the ETV6-RUNX1 fusion gene. In contrast, CD304 showed an inverse association with MLL gene rearrangements (p = 0.01). The expression levels of CD73, CD86 and CD304 at day 15 after starting therapy (MRD15) were stable or higher than at diagnosis in 35/37 (95%), 40/56 (71%) and 19/41 (46%) cases investigated, respectively. This was also associated with an increased mean nMFI at MRD15 vs. diagnosis of +24 and +3 nMFI units for CD73 and CD86, respectively. In addition, gain of expression of CD73 and CD86 at MRD15 for cases that were originally negative for these markers at diagnosis was observed in 16% and 18% of cases, respectively. Of note, CD304 remained aberrantly positive in 63% of patients, despite its levels of expression decreased at follow-up in 54% of cases. CONCLUSIONS Here we show that CD73, CD86 and CD304 are aberrantly (over)expressed in a substantial percentage of BCP-ALL patients and that their expression profile remains relatively stable early after starting therapy, supporting their potential contribution to improved MRD analysis by flow cytometry.
Collapse
Affiliation(s)
- Łukasz Sędek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice (SUM), ul. Jordana 19, 41-808 Zabrze, Poland
| | - Prisca Theunissen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Elaine Sobral da Costa
- Pediatrics Institute IPPMG, Faculty of Medicine, Federal University of Rio de Janeiro, Av. Horacio Macedo, Predio do CT, CEP 21941-914 Rio de Janeiro, Brazil
| | - Alita van der Sluijs-Gelling
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University (CU), V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Giuseppe Gaipa
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Via Pergolesi 33, 20900 Monza, Italy
| | - Alicja Sonsala
- Department of Pediatric Hematology and Oncology, Medical University of Silesia in Katowice (SUM), ul. 3 Maja 13-15, 41-800 Zabrze, Poland
| | - Magdalena Twardoch
- Department of Pediatric Hematology and Oncology, Medical University of Silesia in Katowice (SUM), ul. 3 Maja 13-15, 41-800 Zabrze, Poland
| | - Elen Oliveira
- Pediatrics Institute IPPMG, Faculty of Medicine, Federal University of Rio de Janeiro, Av. Horacio Macedo, Predio do CT, CEP 21941-914 Rio de Janeiro, Brazil
| | - Michaela Novakova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University (CU), V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Chiara Buracchi
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Via Pergolesi 33, 20900 Monza, Italy
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (Nucleus), University of Salamanca (USAL), 37007 Salamanca, Spain; CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Paseo de la Universidad de Coimbra, s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Vincent H J van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia in Katowice (SUM), ul. 3 Maja 13-15, 41-800 Zabrze, Poland
| | | |
Collapse
|
40
|
Dai Q, Liu X, Yang H, Guo S, Wang Y, Peng L, Ye L, Chen L, Lai C, Chen Q, Zhang G, Jiang Y. No prognostic significance of immunophenotypic changes at the end of remission induction therapy in children with B-lineage acute lymphoblastic leukemia. Leuk Res 2018; 68:57-61. [PMID: 29544133 DOI: 10.1016/j.leukres.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
Detection of aberrant antigen expression in acute lymphoblastic leukemia (ALL) by flow cytometric is proposed for the quantification of minimal residual disease (MRD). There are few studies that investigate the stability of the antigen expression in children with B lineage ALL at the end of remission induction therapy and determine its prognostic impact. Between 2010 and 2015, 691 bone marrow specimens of childhood ALL were sent at diagnosis for immunophenotypic characterization, and follow-up samples for MRD were analyzed on day 33. Of these, 155 patients with MRD more than or equal to 0.01% were eligible for the study. Immunophenotypic studies were performed by multiparametric flow cytometry using four-colour monoclonal antibody combinations. Overall, 86 of 155 (55.5%) cases showed phenotype shifts at least one marker. CD19 was the most stable markers. By contrast, CD20 was significantly different between diagnosis and day 33 in nearly one third of the cases. Shifts of antigen expression was not significantly associated with EFS, RFS or OS (P > 0.05). Multivariate analysis showed that WBC and BCR-ABL have independent prognostic value in childhood ALL. Changes in antigen expressions were commonly occurred at the end of induction and not associated with prognostic value in patients whose MRD were positive on day 33.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Hui Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Lan Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Chunqi Lai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Qi Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China.
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, 610041, Chengdu, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China.
| |
Collapse
|
41
|
Icoz K, Soylu MC, Canikara Z, Unal E. Quartz-crystal Microbalance Measurements of CD19 Antibody Immobilization on Gold Surface and Capturing B Lymphoblast Cells: Effect of Surface Functionalization. ELECTROANAL 2018. [DOI: 10.1002/elan.201700789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kutay Icoz
- BioMINDS (Bio Micro/Nano Devices and Sensors) Lab, Department of Electrical and Electronics Engineering; Abdullah Gul University; 38080 Kayseri Turkey
| | - Mehmet Cagri Soylu
- Biomedical Engineering Department; Erciyes University; 38030 Kayseri Turkey
| | - Zeynep Canikara
- Biomedical Engineering Department; Erciyes University; 38030 Kayseri Turkey
| | - Ekrem Unal
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine; Erciyes University; 38030 Kayseri Turkey
| |
Collapse
|
42
|
Shaver AC, Seegmiller AC. B Lymphoblastic Leukemia Minimal Residual Disease Assessment by Flow Cytometric Analysis. Clin Lab Med 2017; 37:771-785. [DOI: 10.1016/j.cll.2017.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Xiao W, Salem D, McCoy CS, Lee D, Shah NN, Stetler-Stevenson M, Yuan CM. Early recovery of circulating immature B cells in B-lymphoblastic leukemia patients after CD19 targeted CAR T cell therapy: A pitfall for minimal residual disease detection. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:434-443. [PMID: 28888074 DOI: 10.1002/cyto.b.21591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND CD19-targeted chimeric-antigen receptor-modified T-cells (CAR-T) are promising in the treatment of refractory B-lymphoblastic leukemia (B-ALL). Minimal residual disease (MRD) detection by multicolor flow cytometry (FCM) is critical to distinguish B-ALL MRD from regenerating, non-neoplastic B-cell populations. METHODS FCM was performed on samples from 9 patients with B-ALL treated with CAR-T. RESULTS All 9 patients showed response to CAR-T. Additionally, FCM revealed circulating CD10 + B cells, potentially mimicking MRD. Circulating CD10+ B-cells were detected in blood from 3 days to 3 months after CAR-T, comprising 73% (median) of B-cells (52-83%, 95%CI). They expressed CD19, CD10, CD20, bright CD9, CD22, CD24, moderate CD38 and dim CD58, but were CD34 (-), with bright CD45 and polyclonal surface light chain immunoglobulin (sIg) expression. A similar CD10 + B-cell subpopulation was detected by marrow FCM, amidst abundant B-cell precursors. CONCLUSIONS These circulating CD10 + B-cells are compatible with immature B-cells, and are a reflection of B-cell recovery within the marrow. They are immunophenotypically distinguishable from residual B-ALL. Expression of light chain sIg and key surface antigens characterizing regenerating B-cell precursors can distinguish immature B-cells from B-ALL MRD and prevent misdiagnosis. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Wenbin Xiao
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Present address: Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Dalia Salem
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Catharine S McCoy
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Lee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Constance M Yuan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Huang YJ, Coustan-Smith E, Kao HW, Liu HC, Chen SH, Hsiao CC, Yang CP, Jaing TH, Yeh TC, Kuo MC, Lai CL, Chang CH, Campana D, Liang DC, Shih LY. Concordance of two approaches in monitoring of minimal residual disease in B-precursor acute lymphoblastic leukemia: Fusion transcripts and leukemia-associated immunophenotypes. J Formos Med Assoc 2017; 116:774-781. [DOI: 10.1016/j.jfma.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/16/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022] Open
|
45
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
46
|
Theunissen PMJ, Sedek L, De Haas V, Szczepanski T, Van Der Sluijs A, Mejstrikova E, Nováková M, Kalina T, Lecrevisse Q, Orfao A, Lankester AC, van Dongen JJM, Van Der Velden VHJ. Detailed immunophenotyping of B-cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection. Br J Haematol 2017; 178:257-266. [DOI: 10.1111/bjh.14682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Prisca M. J. Theunissen
- Department of Immunology; Erasmus MC, University Medical Centre Rotterdam; Rotterdam the Netherlands
| | - Lukasz Sedek
- Department of Paediatric Haematology and Oncology; Zabrze Poland
- Medical University of Silesia (SUM); Katowice Poland
| | | | - Tomasz Szczepanski
- Department of Paediatric Haematology and Oncology; Zabrze Poland
- Medical University of Silesia (SUM); Katowice Poland
| | | | - Ester Mejstrikova
- Department of Paediatric Haematology and Oncology; 2nd Faculty of Medicine; Charles University (DPH/O) and University Hospital Motol; Prague Czech Republic
| | - Michaela Nováková
- Department of Paediatric Haematology and Oncology; 2nd Faculty of Medicine; Charles University (DPH/O) and University Hospital Motol; Prague Czech Republic
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology; 2nd Faculty of Medicine; Charles University (DPH/O) and University Hospital Motol; Prague Czech Republic
| | - Quentin Lecrevisse
- Cancer Research Centre (IBMCC-CSIC); Department of Medicine and Cytometry Service; University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL); Salamanca Spain
| | - Alberto Orfao
- Cancer Research Centre (IBMCC-CSIC); Department of Medicine and Cytometry Service; University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL); Salamanca Spain
| | - Arjan C. Lankester
- Department of Paediatrics; Leiden University Medical Centre; Leiden the Netherlands
| | - Jacques J. M. van Dongen
- Department of Immunology; Erasmus MC, University Medical Centre Rotterdam; Rotterdam the Netherlands
- Department of Immunohaematology and Blood Transfusion; Leiden University Medical Centre; Leiden the Netherlands
| | | | | |
Collapse
|
47
|
Baraka A, Sherief LM, Kamal NM, Shorbagy SE. Detection of minimal residual disease in childhood B-acute lymphoblastic leukemia by 4-color flowcytometry. Int J Hematol 2017; 105:784-791. [PMID: 28324281 DOI: 10.1007/s12185-017-2206-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
Abstract
Monitoring of minimal residual disease (MRD) is currently considered the most powerful predictor of outcome in acute lymphoblastic leukemia (ALL). Achievement of a negative MRD state assessed by multicolor flowcytometry (MFC) is an important predictor of disease-free survival (DFS) and overall survival (OS) in ALL patients. We sought to determine whether panels of antibodies combination are more suitable for detection of MRD in Childhood ALL. Eighty-four (84) patients with ALL (B-lineage subtype) were enrolled in this study. Normal template for B cell precursors was established in 15 control participants using 4-four panels of monoclonal Antibodies (Mo Abs),{CD22, CD45, CD58 and CD97 in combination with CD10, CD19, CD34}. At diagnosis, CD22 exhibited the lowest incidence of expression in only 50% of all patients, while CD45, CD58, and CD97 were expressed in 80.9, 59.5 and 92.8%, respectively. Analysis of MRD was performed for each Mo Abs combination at day 0 and day 14 post-induction of chemotherapy by 4-color (FCM). The incidence of MRD was 61.9, 70.6, 60.0 and 55.1% for CD22, CD45, CD58 and CD97, respectively. In B-ALL patients, (CD10/CD19/CD34/CD45) + (CD10/CD19/CD34/CD97) represented the highest incidence of expression of leukemic cells markers with a significant correlation with blasts count, suggesting that these are more specific for MRD detection. Also FCM is relatively cost effective for detection of MRD in ALL patients and its applicability in routine leukemia lab is valuable. MRD evaluation at the end of the induction therapy (i.e. day 35 or 42 according to the different schedules) is advised. Also, Ig/T cell receptor gene rearrangements and gene fusions analyzed by polymerase chain reaction (PCR) are preferred.
Collapse
Affiliation(s)
- Ahmad Baraka
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Laila M Sherief
- Department of Pediatric, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa M Kamal
- Department of Pediatric, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen El Shorbagy
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
48
|
Pemmaraju N, Kantarjian H, Jorgensen JL, Jabbour E, Jain N, Thomas D, O'Brien S, Wang X, Huang X, Wang SA, Konopleva M, Konoplev S, Kadia T, Garris R, Pierce S, Garcia‐Manero G, Cortes J, Ravandi F. Significance of recurrence of minimal residual disease detected by multi-parameter flow cytometry in patients with acute lymphoblastic leukemia in morphological remission. Am J Hematol 2017; 92:279-285. [PMID: 28052371 DOI: 10.1002/ajh.24629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Abstract
We sought to determine the significance of minimal residual disease (MRD) relapse in patients with ALL after achieving MRD negative status following induction and consolidation therapy. Between January 2003 and September 2014, 647 newly diagnosed patients were treated [HyperCVAD-based (n = 531); Augmented BFM (n = 116)]. Six hundred and one (93%) achieved complete remission (CR), and 546 (91%) became MRD negative. Fifty-five patients [HyperCVAD-based (n = 49); Augmented BFM (n = 6)] developed recurrence of MRD while still in morphological CR and are the subjects of this study. MRD was assessed by 6-color (4-color prior to 2009) multi-parameter flow cytometry (MFC) at CR and multiple time points thereafter. Their median age was 44 years (range, 18-72 years), median WBC at initial presentation was 7.3 K/µL-1 (range, 0.6-303.8 K/µL-1 ) and median bone marrow blast percentage 88% (range, 26-98%). The median time to MRD relapse was 14 months (range 3-58 months). Forty-four (80%) patients subsequently developed morphological relapse after median of 3 months (range, <1-33 months) from detection of MRD recurrence. Treatments received after MRD positivity and prior to morphological relapse: 16 continued maintenance chemotherapy; 15 received late intensification; 9 allogeneic stem cell transplant, 9 changed chemotherapy, 6 no further therapy. Only six remain alive and in CR1 and nine are alive after morphological relapse. MRD relapse detected by MFC at any time after achieving CR is associated with a high risk for morphological relapse. SCT can result in long-term remission in some patients. Prospective studies of long-term MRD assessments, together with less toxic treatment strategies to eradicate MRD, are warranted.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Hagop Kantarjian
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Jeffrey L. Jorgensen
- Department of PathologyUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Elias Jabbour
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Nitin Jain
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Deborah Thomas
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Susan O'Brien
- Division of Hematology/Oncology, University of California, Chao Family Comprehensive Cancer Center, Irvine California
| | - Xuemei Wang
- Department of BiostatisticsUniversity of Texas, MD Anderson Cancer Center Texas
| | - Xuelin Huang
- Department of BiostatisticsUniversity of Texas, MD Anderson Cancer Center Texas
| | - Sa A. Wang
- Department of PathologyUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Marina Konopleva
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Sergej Konoplev
- Department of PathologyUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Tapan Kadia
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Rebecca Garris
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Sherry Pierce
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | | | - Jorge Cortes
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| | - Farhad Ravandi
- Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHouston Texas
| |
Collapse
|
49
|
Chen X, Wood BL. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev 2017; 31:63-75. [DOI: 10.1016/j.blre.2016.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 01/04/2023]
|
50
|
Goldschmidt N, Darawshy F, Kleinstern G, Slyusarevsky E, Pogrebijski G, Krichevsky S, Ben-Yehuda D, Gatt ME. The prognostic value of bone marrow involvement at the molecular level in aggressive lymphoma. Leuk Lymphoma 2016; 58:45-52. [PMID: 27756163 DOI: 10.1080/10428194.2016.1201569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We retrospectively studied the prognostic role of molecular (gene rearrangement, GRR) bone marrow (BM) involvement in diffuse large B-cell lymphoma (DLBCL, 424 patients) and in peripheral T-cell lymphoma (PTCL, 67 patients). When correlating BM GRR to histological findings at diagnosis, the GRR test was more sensitive (p = 0.036) but less specific (p < 0.0001) in PTCL than in DLBCL. For DLBCL (but not PTCL), a positive BM GRR correlated with advanced stage (p = 0.0001) and high IPI (p = 0.002), and worsened the progression free survival (PFS) (p = 0.05) and overall survival (OS) (p = 0.01), irrespective of rituximab treatment. Histologic negative/GRR positive cases had worse PFS/OS (p < 0.0001) than histologic/GRR double negative cases, however BM GRR was not an independent prognostic survival factor. End-of-treatment BM GRR did not predict survival. We conclude that BM GRR is unjustified as a prognostic tool for PTCL and should be reserved for a subset of DLBCL patients with negative histology of the BM.
Collapse
Affiliation(s)
- Neta Goldschmidt
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Fares Darawshy
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Geffen Kleinstern
- b School of Public Health, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Elena Slyusarevsky
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Galina Pogrebijski
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Svetlana Krichevsky
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Dina Ben-Yehuda
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Moshe E Gatt
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|