1
|
Bamias G, Menghini P, Pizarro TT, Cominelli F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 2024:gutjnl-2024-332504. [PMID: 39266053 DOI: 10.1136/gutjnl-2024-332504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Zhan RR, Wang D, Zhang XL. Progress in research of TNF-like cytokine 1A as a therapeutic target for inflammatory bowel disease. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:397-404. [DOI: 10.11569/wcjd.v32.i6.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
3
|
Yu Y, Jiang P, Sun P, Su N, Lin F. Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Exp Ther Med 2021; 22:693. [PMID: 33986858 PMCID: PMC8111866 DOI: 10.3892/etm.2021.10125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Death receptor 3 (DR3) and its corresponding ligand, tumor necrosis factor-like ligand 1A (TL1A), belong to the tumor necrosis factor superfamily. Signaling via this receptor-ligand pair results in pro-inflammatory and anti-inflammatory effects. Effector lymphocytes can be activated to exert pro-inflammatory activity by triggering the DR3/TL1A pathway. By contrast, DR3/TL1A signaling also induces expansion of the suppressive function of regulatory T cells, which serve an important role in exerting anti-inflammatory functions and maintaining immune homeostasis. Preclinical evidence indicates that neutralizing and agonistic antibodies, as well as ligand-based approaches targeting the DR3/TL1A pathway, may be used to treat diseases, including inflammatory and immune-mediated diseases. Accumulating evidence has suggested that modulating the DR3/TL1A pathway is a promising therapeutic approach for patients with these diseases. This review discusses preclinical models to gauge the progress of therapeutic strategies for diseases involving the DR3/TL1A pathway to aid in drug development.
Collapse
Affiliation(s)
- Yunhong Yu
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
4
|
Furfaro F, Alfarone L, Gilardi D, Correale C, Allocca M, Fiorino G, Argollo M, Zilli A, Zacharopoulou E, Loy L, Roda G, Danese S. TL1A: A New Potential Target in the Treatment of Inflammatory Bowel Disease. Curr Drug Targets 2021; 22:760-769. [PMID: 33475057 DOI: 10.2174/1389450122999210120205607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic inflammatory diseases of the gastrointestinal tract. In the last few years, the development of biological agents targeting cytokines and receptors involved in IBD pathogenesis has led to better outcomes and has improved the course of the disease. Despite their effectiveness, drugs such as tumor necrosis factor (TNF) inhibitors, anti-Interleukin-12/23 and anti-integrins, do not induce a response in about one-third of patients, and 40% of patients lose response over time. Therefore, more efficient therapies are required. Recent studies showed that TL1A (Tumor necrosis factor-like cytokine 1A) acts as a regulator of mucosal immunity and participates in immunological pathways involved in the IBD pathogenesis. In this review article, we analyze the role of TL1A as a new potential target therapy in IBD patients.
Collapse
Affiliation(s)
- Federica Furfaro
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Ludovico Alfarone
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Daniela Gilardi
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Carmen Correale
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Mariangela Allocca
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Gionata Fiorino
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | | | - Alessandra Zilli
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Eirini Zacharopoulou
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Laura Loy
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Giulia Roda
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Silvio Danese
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| |
Collapse
|
5
|
Zhu S, Wang B, Jia Q, Duan L. Candidate single nucleotide polymorphisms of irritable bowel syndrome: a systemic review and meta-analysis. BMC Gastroenterol 2019; 19:165. [PMID: 31615448 PMCID: PMC6792237 DOI: 10.1186/s12876-019-1084-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Genetic factors increase the risk of irritable bowel syndrome (IBS). Analysis of single nucleotide polymorphisms (SNPs) has been used in IBS patients, but the findings are inconsistent. The goal of this review was to synthesize all the published SNPs studies of IBS through meta-analysis to objectively evaluate the relevance of SNPs to IBS risks. Methods IBS - related polymorphisms studies from 2000 to 2018 were searched. Pooled odds ratios with a 95% confidence interval for each SNP were evaluated through five genetic models. Ethnicity, ROME criteria and IBS subtypes were defined for subgroup analyze. Results Ten relevant genes were evaluated. SNPs rs4263839 and rs6478108 of TNFSF15 associated with an increased risk of IBS; IL6 rs1800795 increased the risk for Caucasian IBS patients which diagnosed by Rome III criteria; and IL23R rs11465804 increased the risk for IBS-C patients. IL10 rs1800896 GG genotype associated with a decreased risk of IBS. No evidence supported the association of GNβ3 rs5443, TNFα rs1800629, and IL10 rs1800871 to IBS in this study. Conclusions This meta-analysis presents an in-depth overview for IBS SNPs analysis. It was confirmed that polymorphisms of TNFSF15 associated with increased IBS risk, while IL10 rs1800896 associated with decreased IBS risk. It might offer some insights into polymorphisms of inflammation factors which might affect IBS susceptibility. Moreover, the analysis also emphasizes the importance of diagnostic criteria and phenotype homogeneity in IBS genetic studies.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Ben Wang
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
6
|
Collins FL, Stone MD, Turton J, McCabe LR, Wang ECY, Williams AS. Oestrogen-deficiency induces bone loss by modulating CD14 + monocyte and CD4 + T cell DR3 expression and serum TL1A levels. BMC Musculoskelet Disord 2019; 20:326. [PMID: 31299941 PMCID: PMC6626337 DOI: 10.1186/s12891-019-2704-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background Oestrogen-deficiency induced by menopause is associated with reduced bone density and primary osteoporosis, resulting in an increased risk of fracture. While the exact etiology of menopause-induced primary osteoporotic bone loss is not fully known, members of the tumour necrosis factor super family (TNFSF) are known to play a role. Recent studies have revealed that the TNFSF members death receptor 3 (DR3) and one of its ligands, TNF-like protein 1A (TL1A) have a key role in secondary osteoporosis; enhancing CD14+ peripheral blood mononuclear cell (PBMC) osteoclast formation and bone resorption. Whether DR3 and TL1A contribute towards bone loss in menopause-induced primary osteoporosis however, remains unknown. Methods To investigate this we performed flow cytometry analysis of DR3 expression on CD14+ PBMCs isolated from pre- and early post-menopausal females and late post-menopausal osteoporotic patients. Serum levels of TL1A, CCL3 and total MMP-9 were measured by ELISA. In vitro osteoclast differentiation assays were performed to determine CD14+ monocyte osteoclastogenic potential. In addition, splenic CD4+ T cell DR3 expression was investigated 1 week and 8 weeks post-surgery, using the murine ovariectomy model. Results In contrast to pre-menopausal females, CD14+ monocytes isolated from post-menopausal females were unable to induce DR3 expression. Serum TL1A levels were decreased approx. 2-fold in early post-menopausal females compared to pre-menopausal controls and post-menopausal osteoporotic females; no difference was observed between pre-menopausal and late post-menopausal osteoporotic females. Analysis of in vitro CD14+ monocyte osteoclastogenic potential revealed no significant difference between the post-menopausal and post-menopausal osteoporotic cohorts. Interestingly, in the murine ovariectomy model splenic CD4+ T cell DR3 expression was significantly increased at 1 week but not 8 weeks post-surgery when compared to the sham control. Conclusion Our results reveals for the first time that loss of oestrogen has a significant effect on DR3; decreasing expression on CD14+ monocytes and increasing expression on CD4+ T cells. These data suggest that while oestrogen-deficiency induced changes in DR3 expression do not affect late post-menopausal bone loss they could potentially have an indirect role in early menopausal bone loss through the modulation of T cell activity.
Collapse
Affiliation(s)
- Fraser L Collins
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK. .,Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Michael D Stone
- University Hospital Llandough, Cardiff & Vale University Health Board, Cardiff, UK
| | - Jane Turton
- University Hospital Llandough, Cardiff & Vale University Health Board, Cardiff, UK
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Eddie C Y Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anwen S Williams
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Valatas V, Kolios G, Bamias G. TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity. Front Immunol 2019; 10:583. [PMID: 30972074 PMCID: PMC6445966 DOI: 10.3389/fimmu.2019.00583] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
TL1A and its functional receptor DR3 are members of the TNF/TNFR superfamilies of proteins. Binding of APC-derived TL1A to lymphocytic DR3 provides co-stimulatory signals for activated lymphocytes. DR3 signaling affects the proliferative activity of and cytokine production by effector lymphocytes, but also critically influences the development and suppressive function of regulatory T-cells. DR3 was also found to be highly expressed by innate lymphoid cells (ILCS), which respond to stimulation by TL1A. Several recent studies with transgenic and knockout mice as well as neutralizing or agonistic antibodies for these two proteins, have clearly shown that TL1A/DR3 are important mediators of several chronic immunological disorders, including Inflammatory Bowel Disease (IBD). TL1A and DR3 are abundantly localized at inflamed intestinal areas of patients with IBD and mice with experimental ileitis or colitis and actively participate in the immunological pathways that underlie mucosal homeostasis and intestinal inflammation. DR3 signaling has demonstrated a dichotomous role in mucosal immunity. On the one hand, during acute mucosal injury it exerts protective functions by ameliorating the severity of acute inflammatory responses and facilitating tissue repair. On the other hand, it critically participates in the pro-inflammatory pathways that underlie chronic inflammatory responses, such as those that take place in IBD. These effects are mediated through modulation of the relative mucosal abundance and function of Th1, Th2, Th17, Th9, and Treg lymphocytes, but also of all types of ILCs. Recently, an important role was demonstrated for TL1A/DR3 as potential mediators of intestinal fibrosis that is associated with the presence of gut inflammation. These accumulating data have raised the possibility that TL1A/DR3 pathways may represent a valid therapeutic target for chronic immunological diseases. Nevertheless, applicability of such a therapeutic approach will greatly rely on the net result of TL1A/DR3 manipulation on the various cell populations that will be affected by this approach.
Collapse
Affiliation(s)
- Vassilis Valatas
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI-unit, National & Kapodistrian University of Athens, Third Department of Internal Medicine, Sotiria Hospital, Athens, Greece
| |
Collapse
|
8
|
Li L, Lu Y, Fu L, Zhou P, Zhang L, Wang W, Nie J, Zhang D, Liu Y, Wu B, Zhou Y, Chen T. Expression of death receptor 3 (DR3) on peripheral blood mononuclear cells of patients with psoriasis vulgaris. Postgrad Med J 2018; 94:551-555. [PMID: 30341229 DOI: 10.1136/postgradmedj-2018-136040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/08/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND A series of previous reports indicated that tumour necrosis factor-like ligand 1A (TL1A) and its receptor death receptor 3 (DR3) are involved in the pathogenesis of psoriasis vulgaris (PV), which is a common chronic skin disease accompanied by a number of comorbidities, although their exact roles remain unclear. Our previous studies demonstrated that serum TL1A levels were substantially elevated in patients with PV, but the detection of DR3 expression in peripheral blood mononuclear cells (PBMCs) of patients with PV had not been reported. Therefore, we detected DR3 expression on CD4+, CD8+, CD14+ and CD19+ PBMCs of patients with PV, atopic dermatitis (AD) and healthy volunteers. METHODS Blood samples were collected from participants with PV before and after treatment. Then, PBMCs from patients with PV were isolated. The Psoriasis Area Severity Index (PASI) was used to assess severity in patients with PV. The DR3 on CD4+, CD8+, CD14+ and CD19+ PBMCs were detected by flow cytometry analysis. Pearson's correlation analysis was then used to investigate the relationship between DR3 expression and PASI scores in patients with PV. RESULTS Comparing with the healthy volunteers and patients with AD, the percentage of DR3-expressing on CD8+ and CD14+ PBMCs in patients with PV was elevated, but the percentage of DR3-expressing on CD8+ and CD14+ cells decreased after anti-inflammatory treatment, which was correlated with PASI scores. CONCLUSIONS Taken together, these findings suggest that DR3 may play a key role in the pathogenesis of PV.
Collapse
Affiliation(s)
- Lin Li
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yonghong Lu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Lixin Fu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Peimei Zhou
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Liwen Zhang
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Wenju Wang
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Jianjun Nie
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Dawei Zhang
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yan Liu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Bo Wu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | | | - Tao Chen
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
9
|
Rutkowski J, Cyman M, Ślebioda T, Bemben K, Rutkowska A, Gruchała M, Kmieć Z, Pliszka A, Zaucha R. Evaluation of peripheral blood T lymphocyte surface activation markers and transcription factors in patients with early stage non-small cell lung cancer. Cell Immunol 2017; 322:26-33. [DOI: 10.1016/j.cellimm.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
|
10
|
Bittner S, Ehrenschwender M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Lett 2017; 591:2543-2555. [DOI: 10.1002/1873-3468.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| |
Collapse
|