1
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
2
|
Ballaz S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci 2017; 28:573-585. [DOI: 10.1515/revneuro-2016-0088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
AbstractThe CCK(1) receptor is a G-protein-coupled receptor activated by the sulfated forms of cholecystokinin (CCK), a gastrin-like peptide released in the gastrointestinal tract and mammal brain. A substantial body of research supports the hypothesis that CCK(1)r stimulates gallbladder contraction and pancreatic secretion in the gut, as well as satiety in brain. However, this receptor may also fulfill relevant roles in behavior, thanks to its widespread distribution in the brain. The strategic location of CCK(1)r in mesolimbic structures and specific hypothalamic and brainstem nuclei lead to complex interactions with neurotransmitters like dopamine, serotonin, and glutamate, as well as hypothalamic hormones and neuropeptides. The activity of CCK(1)r maintains adequate levels of dopamine and regulates the activity of serotonin neurons of raphe nuclei, which makes CCK(1)r an interesting therapeutic target for the development of adjuvant treatments for schizophrenia, drug addiction, and mood disorders. Unexplored functions of CCK(1)r, like the transmission of interoceptive sensitivity in addition to the regulation of hypothalamic hormones and neurotransmitters affecting emotional states, well-being, and attachment behaviors, may open exciting roads of research. The absence of specific ligands for the CCK(1) receptor has complicated the study of its distribution in brain so that research about its impact on behavior has been published sporadically over the last 30 years. The present review reunites all this body of evidence in a comprehensive way to summarize our knowledge about the actual role of CCK in the neurobiology of mental illness.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose y Proyecto Yachay s/n, San Miguel de Urcuquí 100119, Ecuador
| |
Collapse
|
3
|
Holm L, Liang W, Thorsell A, Hilke S. Acute effects on brain cholecystokinin-like concentration and anxiety-like behaviour in the female rat upon a single injection of 17β-estradiol. Pharmacol Biochem Behav 2014; 122:222-7. [PMID: 24732637 DOI: 10.1016/j.pbb.2014.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/30/2014] [Accepted: 04/05/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The neuropeptide cholecystokinin (CCK) has been implicated in the neurobiology of anxiety and panic disorders, as well as in dopamine-related behaviours. Anxiety and panic-disorders are twice as common in females compared to males, but studies of females are rare, although increasing in number. Limited studies have found that CCK fluctuates in limbic regions during the estrous cycle, and that CCK and its receptors are sensitive to estrogen. AIM/PURPOSE The aim of the present work was to study the acute effects of 17β-estradiol on anxiety-like behaviour and on CCK-like immunoreactivity (LI) in the female rat brain (amygdala, hippocampus, nucleus accumbens, and cingulate cortex). METHODS Four groups of female Sprague-Dawley rats were used: ovariectomized, ovariectomized+17β-estradiol-replacement, sham, and sham+17β-estradiol-replacement. The effect of 17β-estradiol-replacement on anxiety-related behaviour was measured in all animals on the elevated plus maze 2-24 h after injection. CCK-LI concentration was measured in punch biopsies by means of radioimmunoassay. RESULTS 17β-estradiol decreased anxiety-like behaviour 2 h after administration in ovariectomized and sham-operated animals, as demonstrated by increased exploration of the open arms compared to respective sesame oil-treated controls. This effect was not present when testing occurred 24 h post-treatment. The rapid behavioural effect of 17β-estradiol was accompanied by changes in CCK-LI concentrations in regions of the limbic system including cingulate cortex, hippocampus, amygdala and nucleus accumbens. CONCLUSION Although the interpretation of these data requires caution since the data were collected from two different experiments, our results suggest that estrogen-induced anxiolytic effects may be associated with changes of the CCK-system in brain regions controlling anxiety-like behaviour.
Collapse
Affiliation(s)
- Lovisa Holm
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Wen Liang
- TNO Metabolic Health Research, Leiden, Netherlands
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Susanne Hilke
- Department of Clinical Chemistry, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
4
|
Ritov G, Ardi Z, Richter-Levin G. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder of underwater trauma. Front Behav Neurosci 2014; 8:18. [PMID: 24523683 PMCID: PMC3905214 DOI: 10.3389/fnbeh.2014.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/12/2014] [Indexed: 01/17/2023] Open
Abstract
Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggests a pivotal role for the ventral hippocampus (VH) in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD). Such intrusive recollections are often triggered by reminders associated with the trauma. We examined the impact of exposure to a trauma reminder (under water trauma (UWT)) on the activation of the basolateral amygdala (BLA), dorsal and VH. Rats were exposed to UWT and 24 h later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK) was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the VH and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the VH sub-regions positively correlated with the activation of the BLA. Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the VH. Measured 24 h after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.
Collapse
Affiliation(s)
- Gilad Ritov
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel ; Psychology Department, University of Haifa Haifa, Israel
| |
Collapse
|
5
|
Yoshitake S, Ijiri S, Kehr J, Yoshitake T. Concurrent modulation of extracellular levels of noradrenaline and cAMP during stress and by anxiogenic- or anxiolytic-like neuropeptides in the prefrontal cortex of awake rats. Neurochem Int 2012; 62:314-23. [PMID: 23274451 DOI: 10.1016/j.neuint.2012.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to examine the effects of stress and the role of locally infused anxiogenic-like neuropeptides galanin, CCK-8, vasopressin, substance P and neurokinin A, and anxiolytic-like peptides NPY, nociceptin/orphanin FQ, somatostatin and neurotensin, on modulation of noradrenaline (NA) and cAMP efflux monitored simultaneously by microdialysis in the medial prefronatal cortex of awake rats. Concentrations of cAMP were determined by a newly developed method based on derivatization of cAMP with 2-chloroacetaldehyde followed by HPLC with fluorescence detection. Local infusion of forskolin (10 and 30 μM) dose-dependently increased the cAMP levels to 417% and 1050% of the control group, respectively. Similarly, local infusion of NA (10 μM) increased the cAMP to the peak level of 168%. A 5-min tail pinch and a 10-min swim stress rapidly increased the NA and cAMP levels to 167% and 203% (NA) and 141% and 161% (cAMP), respectively. Infusion of galanin and CCK-8 (0.5 nmol, and 1.5 nmol/0.5 μl) dose-dependently increased NA to the peak levels of 191% and 179% and cAMP levels to 174% and 166%, respectively. The peak levels following infusions of vasopressin, substance P and neurokinin A were 91%, 135% and 86% for NA and 131%, 83% and 76% for cAMP, respectively. Infusions of anxiolytic-like peptides at highest concentrations significantly increased (NPY, 136%) or decreased (nociceptin, 71%; somatostatin, 86%) the NA levels, whereas neurotensin had no effect. The cAMP levels decreased to 86% (NPY, neurotensin), 78% (nociceptin), somatostatin infusion was without effect. The present findings confirmed a close correlation between the stress-induced increases in prefrontal cortical NA and cAMP levels, as well as, concurrent changes in NA and cAMP levels following infusions of galanin and CCK-8 (increased levels) and nociceptin/orphanin FQ (decreased levels). Infusions of other neuropeptides showed a more complex pattern of NA and cAMP responses.
Collapse
Affiliation(s)
- Shimako Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
6
|
Zwanzger P, Domschke K, Bradwejn J. Neuronal network of panic disorder: the role of the neuropeptide cholecystokinin. Depress Anxiety 2012; 29:762-74. [PMID: 22553078 DOI: 10.1002/da.21919] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 11/08/2022] Open
Abstract
Panic disorder (PD) is characterized by panic attacks, anticipatory anxiety and avoidance behavior. Its pathogenesis is complex and includes both neurobiological and psychological factors. With regard to neurobiological underpinnings, anxiety in humans seems to be mediated through a neuronal network, which involves several distinct brain regions, neuronal circuits and projections as well as neurotransmitters. A large body of evidence suggests that the neuropeptide cholecystokinin (CCK) might be an important modulator of this neuronal network. Key regions of the fear network, such as amygdala, hypothalamus, peraqueductal grey, or cortical regions seem to be connected by CCKergic pathways. CCK interacts with several anxiety-relevant neurotransmitters such as the serotonergic, GABA-ergic and noradrenergic system as well as with endocannabinoids, NPY and NPS. In humans, administration of CCK-4 reliably provokes panic attacks, which can be blocked by antipanic medication. Also, there is some support for a role of the CCK system in the genetic pathomechanism of PD with particularly strong evidence for the CCK gene itself and the CCK-2R (CCKBR) gene. Thus, it is hypothesized that genetic variants in the CCK system might contribute to the biological basis for the postulated CCK dysfunction in the fear network underlying PD. Taken together, a large body of evidence suggests a possible role for the neuropeptide CCK in PD with regard to neuroanatomical circuits, neurotransmitters and genetic factors. This review article proposes an extended hypothetical model for human PD, which integrates preclinical and clinical findings on CCK in addition to existing theories of the pathogenesis of PD.
Collapse
Affiliation(s)
- P Zwanzger
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.
| | | | | |
Collapse
|
7
|
Effects of exogenous cholecystokinin octapeptide on acquisition of naloxone precipitated withdrawal induced conditioned place aversion in rats. PLoS One 2012; 7:e41860. [PMID: 22848639 PMCID: PMC3407117 DOI: 10.1371/journal.pone.0041860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/26/2012] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin octapeptide (CCK-8), a gut-brain peptide, regulates a variety of physiological behavioral processes. Previously, we reported that exogenous CCK-8 attenuated morphine-induced conditioned place preference, but the possible effects of CCK-8 on aversively motivated drug seeking remained unclear. To investigate the effects of endogenous and exogenous CCK on negative components of morphine withdrawal, we evaluated the effects of CCK receptor antagonists and CCK-8 on the naloxone-precipitated withdrawal-induced conditioned place aversion (CPA). The results showed that CCK2 receptor antagonist (LY-288,513, 10 µg, i.c.v.), but not CCK1 receptor antagonist (L-364,718, 10 µg, i.c.v.), inhibited the acquisition of CPA when given prior to naloxone (0.3 mg/kg) administration in morphine-dependent rats. Similarly, CCK-8 (0.1–1 µg, i.c.v.) significantly attenuated naloxone-precipitated withdrawal-induced CPA, and this inhibitory function was blocked by co-injection with L-364,718. Microinjection of L-364,718, LY-288,513 or CCK-8 to saline pretreated rats produced neither a conditioned preference nor aversion, and the induction of CPA by CCK-8 itself after morphine pretreatments was not significant. Our study identifies a different role of CCK1 and CCK2 receptors in negative affective components of morphine abstinence and an inhibitory effect of exogenous CCK-8 on naloxone-precipitated withdrawal-induced CPA via CCK1 receptor.
Collapse
|
8
|
Orio L, Crespo I, López-Moreno J, Reyes-Cabello C, Rodríguez de Fonseca F, Gómez de Heras R. Additive effects of cannabinoid CB1 receptors blockade and cholecystokinin on feeding inhibition. Pharmacol Biochem Behav 2011; 98:220-6. [DOI: 10.1016/j.pbb.2010.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/27/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
9
|
Abstract
PURPOSE OF REVIEW The hormone cholecystokinin was discovered in 1928 because of its ability to induce gallbladder contraction. Since then, cholecystokinin has been shown to possess multiple functions in the gastrointestinal tract and brain. This review discusses several significant developments in cholecystokinin biology that show how it plays a role in gastrointestinal diseases, including control of appetite. RECENT FINDINGS Cholecystokinin was shown to induce satiety by interacting through CCK-1 receptors located in specialized regions of the hindbrain. Cholecystokinin also inhibits expression of orexigenic peptides in the hypothalamus and prevents stimulation of specialized neurons by ghrelin. In the pancreas, cholecystokinin increased the proliferation of insulin-producing beta cells and reduced insulin-induced hyperphagia. Elevated cholecystokinin levels decreased appetite and reduced intestinal inflammation caused by parasites and bacterial toxins. SUMMARY Understanding the mechanisms by which cholecystokinin regulates orexigenic pathways in the body may lead to strategies for controlling appetite-related disorders such as obesity and bulimia. The reduction of intestinal inflammation by dietary fats (by elevating cholecystokinin) suggests that the hormone plays an integrated role in regulating the ingestion and digestion of food that may be relevant to inflammatory diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
10
|
Yehuda S, Rabinovitz S, Mostofsky DI. Mediation of cognitive function by high fat diet following stress and inflammation. Nutr Neurosci 2006; 8:309-15. [PMID: 16669601 DOI: 10.1080/00268970500509972] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In addition to commonly advertised hazards of obesity contributed by excess dietary fat, evidence of alterations in brain chemistry and structure are well documented. This brief review examines the role of nutrients, minerals and certain lipids, primarily the essential fatty acids (FA), that are beneficial to the maintenance of good health and that may offer therapeutic options by dietary supplementation. The review also considers the damaging effects of stress, especially in pre-existing conditions of obesity and diabetes, as studied in both animals and humans. The main focus of this brief review is to examine the effects of a high fat diet on stress and the immune system with particular emphasis on brain and cognitive function.
Collapse
Affiliation(s)
- S Yehuda
- Psychopharmacology Laboratory, Department of Psychology and Brain Research Institute, Bar Ilan University, Ramat Gan 52900, Israel.
| | | | | |
Collapse
|