1
|
Bollack A, Collij LE, García DV, Shekari M, Altomare D, Payoux P, Dubois B, Grau‐Rivera O, Boada M, Marquié M, Nordberg A, Walker Z, Scheltens P, Schöll M, Wolz R, Schott JM, Gismondi R, Stephens A, Buckley C, Frisoni GB, Hanseeuw B, Visser PJ, Vandenberghe R, Drzezga A, Yaqub M, Boellaard R, Gispert JD, Markiewicz P, Cash DM, Farrar G, Barkhof F. Investigating reliable amyloid accumulation in Centiloids: Results from the AMYPAD Prognostic and Natural History Study. Alzheimers Dement 2024; 20:3429-3441. [PMID: 38574374 PMCID: PMC11095430 DOI: 10.1002/alz.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aβ-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.
Collapse
Affiliation(s)
- Ariane Bollack
- Centre for Medical Image Computing (CMIC)Department of Medical Physics and BioengineeringUniversity College LondonLondonLondonUK
| | - Lyduine E. Collij
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Amsterdam Neuroscience, Brain ImagingVU University AmsterdamAmsterdamThe Netherlands
| | - David Vállez García
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Instituto de investigaciones médicas Hospital del Mar (IMIM)BarcelonaSpain
| | - Daniele Altomare
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Pierre Payoux
- Department of Nuclear MedicineImaging PoleToulouse University HospitalToulouseFrance
- Toulouse NeuroImaging CenterUniversité de ToulouseInsermUPSCHU PurpanPavillon BaudotPlace du Docteur Joseph BaylacToulouseFrance
| | - Bruno Dubois
- Department of NeurologySalpêtrière HospitalAP‐HPSorbonne UniversityParisFrance
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- CIBERNEDNetwork Center for Biomedical Research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- CIBERNEDNetwork Center for Biomedical Research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Agneta Nordberg
- Department of NeurobiologyCare Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- Theme Inflammation and Aging, Karolinska University Hospital, Karolinska InstitutetStockholmSweden
| | - Zuzana Walker
- Division of PsychiatryUniversity College LondonLondonUK
- Essex Partnership University NHS Foundation Trust, The LodgeWickfordUK
| | - Philip Scheltens
- Alzheimer Center and Department of NeurologyAmsterdam Neuroscience, VU University Medical Center, Alzheimercentrum AmsterdamAmsterdamThe Netherlands
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, The University of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University HospitalGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | | | - Jonathan M. Schott
- Dementia Research Centre, UCL Queen Square Institute of NeurologyLondonUK
| | | | | | | | - Giovanni B. Frisoni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Bernard Hanseeuw
- Department of NeurologyInstitute of Neuroscience, Université Catholique de Louvain, Cliniques Universitaires Saint‐LucBrusselsBelgium
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
- WELBIO DepartmentWEL Research InstituteWavreBelgium
| | - Pieter Jelle Visser
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
- Department of NeurobiologyCare Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht UniversityMaastrichtThe Netherlands
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, LBI – KU Leuven Brain InstituteLeuvenBelgium
| | - Alexander Drzezga
- Department of Nuclear MedicineUniversity Hospital Cologne, Universitätsklinikums KölnKölnGermany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine, INM‐2), Forschungszentrum Jülich GmbHJülichGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Maqsood Yaqub
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos IIIMadridSpain
| | - Pawel Markiewicz
- Centre for Medical Image Computing (CMIC)Department of Medical Physics and BioengineeringUniversity College LondonLondonLondonUK
- Computer Science and Informatics, School of Engineering, London South Bank UniversityLondonUK
| | - David M. Cash
- Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute at University College LondonLondonUK
| | | | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC)Department of Medical Physics and BioengineeringUniversity College LondonLondonLondonUK
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
- Queen Square Institute of Neurology, University College LondonLondonUK
| | | |
Collapse
|
2
|
Cheng Y, Ho E, Weintraub S, Rentz D, Gershon R, Das S, Dodge HH. Predicting Brain Amyloid Status Using the National Institute of Health Toolbox (NIHTB) for Assessment of Neurological and Behavioral Function. J Prev Alzheimers Dis 2024; 11:943-957. [PMID: 39044505 PMCID: PMC11269772 DOI: 10.14283/jpad.2024.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
BACKGROUND Amyloid-beta (Aβ) plaque is a neuropathological hallmark of Alzheimer's disease (AD). As anti-amyloid monoclonal antibodies enter the market, predicting brain amyloid status is critical to determine treatment eligibility. OBJECTIVE To predict brain amyloid status utilizing machine learning approaches in the Advancing Reliable Measurement in Alzheimer's Disease and Cognitive Aging (ARMADA) study. DESIGN ARMADA is a multisite study that implemented the National Institute of Health Toolbox for Assessment of Neurological and Behavioral Function (NIHTB) in older adults with different cognitive ability levels (normal, mild cognitive impairment, early-stage dementia of the AD type). SETTING Participants across various sites were involved in the ARMADA study for validating the NIHTB. PARTICIPANTS 199 ARMADA participants had either PET or CSF information (mean age 76.3 ± 7.7, 51.3% women, 42.3% some or complete college education, 50.3% graduate education, 88.9% White, 33.2% with positive AD biomarkers). MEASUREMENTS We used cognition, emotion, motor, sensation scores from NIHTB, and demographics to predict amyloid status measured by PET or CSF. We applied LASSO and random forest models and used the area under the receiver operating curve (AUROC) to evaluate the ability to identify amyloid positivity. RESULTS The random forest model reached AUROC of 0.74 with higher specificity than sensitivity (AUROC 95% CI:0.73 - 0.76, Sensitivity 0.50, Specificity 0.88) on the held-out test set; higher than the LASSO model (0.68 (95% CI:0.68 - 0.69)). The 10 features with the highest importance from the random forest model are: picture sequence memory, cognition total composite, cognition fluid composite, list sorting working memory, words-in-noise test (hearing), pattern comparison processing speed, odor identification, 2-minutes-walk endurance, 4-meter walk gait speed, and picture vocabulary. Overall, our model revealed the validity of measurements in cognition, motor, and sensation domains, in associating with AD biomarkers. CONCLUSION Our results support the utilization of the NIH toolbox as an efficient and standardizable AD biomarker measurement that is better at identifying amyloid negative (i.e., high specificity) than positive cases (i.e., low sensitivity).
Collapse
Affiliation(s)
- You Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Ho
- Northwestern University, Chicago, IL, USA
| | | | - Dorene Rentz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sudeshna Das
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroko H. Dodge
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Jovalekic A, Roé-Vellvé N, Koglin N, Quintana ML, Nelson A, Diemling M, Lilja J, Gómez-González JP, Doré V, Bourgeat P, Whittington A, Gunn R, Stephens AW, Bullich S. Validation of quantitative assessment of florbetaben PET scans as an adjunct to the visual assessment across 15 software methods. Eur J Nucl Med Mol Imaging 2023; 50:3276-3289. [PMID: 37300571 PMCID: PMC10542295 DOI: 10.1007/s00259-023-06279-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Amyloid positron emission tomography (PET) with [18F]florbetaben (FBB) is an established tool for detecting Aβ deposition in the brain in vivo based on visual assessment of PET scans. Quantitative measures are commonly used in the research context and allow continuous measurement of amyloid burden. The aim of this study was to demonstrate the robustness of FBB PET quantification. METHODS This is a retrospective analysis of FBB PET images from 589 subjects. PET scans were quantified with 15 analytical methods using nine software packages (MIMneuro, Hermes BRASS, Neurocloud, Neurology Toolkit, statistical parametric mapping (SPM8), PMOD Neuro, CapAIBL, non-negative matrix factorization (NMF), AmyloidIQ) that used several metrics to estimate Aβ load (SUVR, centiloid, amyloid load, and amyloid index). Six analytical methods reported centiloid (MIMneuro, standard centiloid, Neurology Toolkit, SPM8 (PET only), CapAIBL, NMF). All results were quality controlled. RESULTS The mean sensitivity, specificity, and accuracy were 96.1 ± 1.6%, 96.9 ± 1.0%, and 96.4 ± 1.1%, respectively, for all quantitative methods tested when compared to histopathology, where available. The mean percentage of agreement between binary quantitative assessment across all 15 methods and visual majority assessment was 92.4 ± 1.5%. Assessments of reliability, correlation analyses, and comparisons across software packages showed excellent performance and consistent results between analytical methods. CONCLUSION This study demonstrated that quantitative methods using both CE marked software and other widely available processing tools provided comparable results to visual assessments of FBB PET scans. Software quantification methods, such as centiloid analysis, can complement visual assessment of FBB PET images and could be used in the future for identification of early amyloid deposition, monitoring disease progression and treatment effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
4
|
Therriault J, Lussier FZ, Tissot C, Chamoun M, Stevenson J, Rahmouni N, Pallen V, Bezgin G, Servaes S, Kunach P, Wang Y, Fernandez‐Arias J, Vermeiren M, Pascoal TA, Massarweh G, Vitali P, Soucy J, Saha‐Chaudhuri P, Gauthie S, Rosa‐Neto P. Amyloid beta plaque accumulation with longitudinal [18F]AZD4694 PET. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12391. [PMID: 37644990 PMCID: PMC10461075 DOI: 10.1002/dad2.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 08/31/2023]
Abstract
Introduction [18F]AZD4694 is an amyloid beta (Aβ) imaging agent used in several observational studies and clinical trials. However, no studies have yet published data on longitudinal Aβ accumulation measured with [18F]AZD4694. Methods We assessed 146 individuals who were evaluated with [18F]AZD4694 at baseline and 2-year follow-up. We calculated annual rates of [18F]AZD4694 change for clinically defined and biomarker-defined groups. Results Cognitively unimpaired (CU) older adults displayed subtle [18F]AZD4694 standardized uptake value ratio (SUVR) accumulation over the follow-up period. In contrast, Aβ positive CU older adults displayed higher annual [18F]AZD4694 SUVR increases. [18F]AZD4694 SUVR accumulation in Aβ positive mild cognitive impairment (MCI) and dementia was modest across the neocortex. Discussion Larger increases in [18F]AZD4694 SUVR were observed in CU individuals who had abnormal amyloid positron emission tomography levels at baseline. [18F]AZD4694 can be used to monitor Aβ levels in therapeutic trials as well as clinical settings, particularly prior to initiating anti-amyloid therapies.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Firoza Z. Lussier
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Cécile Tissot
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Mira Chamoun
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jenna Stevenson
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Nesrine Rahmouni
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Vanessa Pallen
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Gleb Bezgin
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Stijn Servaes
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Peter Kunach
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Yi‐Ting Wang
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jaime Fernandez‐Arias
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Marie Vermeiren
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
| | - Tharick A. Pascoal
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gassan Massarweh
- Department of RadiochemistryMcGill UniversityMontrealQuebecCanada
| | - Paolo Vitali
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jean‐Paul Soucy
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Paramita Saha‐Chaudhuri
- Department of EpidemiologyBiostatistics and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Department of Mathematics & StatisticsUniversity of VermontBurlingtonVermontUSA
| | - Serge Gauthie
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
5
|
Brugulat-Serrat A, Sánchez-Benavides G, Cacciaglia R, Salvadó G, Shekari M, Collij LE, Buckley C, van Berckel BNM, Perissinotti A, Niñerola-Baizán A, Milà-Alomà M, Vilor-Tejedor N, Operto G, Falcon C, Grau-Rivera O, Arenaza-Urquijo EM, Minguillón C, Fauria K, Molinuevo JL, Suárez-Calvet M, Gispert JD. APOE-ε4 modulates the association between regional amyloid deposition and cognitive performance in cognitively unimpaired middle-aged individuals. EJNMMI Res 2023; 13:18. [PMID: 36856866 PMCID: PMC9978048 DOI: 10.1186/s13550-023-00967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE To determine whether the APOE-ε4 allele modulates the relationship between regional β-amyloid (Aβ) accumulation and cognitive change in middle-aged cognitively unimpaired (CU) participants. METHODS The 352 CU participants (mean aged 61.1 [4.7] years) included completed two cognitive assessments (average interval 3.34 years), underwent [18F]flutemetamol Aβ positron emission tomography (PET), T1w magnetic resonance imaging (MRI), as well as APOE genotyping. Global and regional Aβ PET positivity was assessed across five regions-of-interest by visual reading (VR) and regional Centiloids. Linear regression models were developed to examine the interaction between regional and global Aβ PET positivity and APOE-ε4 status on longitudinal cognitive change assessed with the Preclinical Alzheimer's Cognitive Composite (PACC), episodic memory, and executive function, after controlling for age, sex, education, cognitive baseline scores, and hippocampal volume. RESULTS In total, 57 participants (16.2%) were VR+ of whom 41 (71.9%) were APOE-ε4 carriers. No significant APOE-ε4*global Aβ PET interactions were associated with cognitive change for any cognitive test. However, APOE-ε4 carriers who were VR+ in temporal areas (n = 19 [9.81%], p = 0.04) and in the striatum (n = 8 [4.14%], p = 0.01) exhibited a higher decline in the PACC. The temporal areas findings were replicated when regional PET positivity was determined with Centiloid values. Regionally, VR+ in the striatum was associated with higher memory decline. As for executive function, interactions between APOE-ε4 and regional VR+ were found in temporal and parietal regions, and in the striatum. CONCLUSION CU APOE-ε4 carriers with a positive Aβ PET VR in regions known to accumulate amyloid at later stages of the Alzheimer's disease (AD) continuum exhibited a steeper cognitive decline. This work supports the contention that regional VR of Aβ PET might convey prognostic information about future cognitive decline in individuals at higher risk of developing AD. CLINICALTRIALS gov Identifier: NCT02485730. Registered 20 June 2015 https://clinicaltrials.gov/ct2/show/NCT02485730 and ClinicalTrials.gov Identifier:NCT02685969. Registered 19 February 2016 https://clinicaltrials.gov/ct2/show/NCT02685969 .
Collapse
Affiliation(s)
- Anna Brugulat-Serrat
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.512357.7Global Brain Health Institute, San Francisco, CA USA
| | - Gonzalo Sánchez-Benavides
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Raffaele Cacciaglia
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Salvadó
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Mahnaz Shekari
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra, Barcelona, Spain
| | - Lyduine E. Collij
- grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Christopher Buckley
- grid.83440.3b0000000121901201Center for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, UK
| | - Bart N. M. van Berckel
- grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Andrés Perissinotti
- grid.410458.c0000 0000 9635 9413Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Niñerola-Baizán
- grid.410458.c0000 0000 9635 9413Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Milà-Alomà
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra, Barcelona, Spain
| | - Natàlia Vilor-Tejedor
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra, Barcelona, Spain ,grid.473715.30000 0004 6475 7299Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Grégory Operto
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.411142.30000 0004 1767 8811Neurologia Department, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.411142.30000 0004 1767 8811Neurologia Department, Hospital del Mar, Barcelona, Spain
| | - Eider M. Arenaza-Urquijo
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillón
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Molinuevo
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.424580.f0000 0004 0476 7612H. Lundbeck A/S, Copenhagen, Denmark
| | - Marc Suárez-Calvet
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.411142.30000 0004 1767 8811Neurologia Department, Hospital del Mar, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
6
|
Collij LE, Farrar G, Valléz García D, Bader I, Shekari M, Lorenzini L, Pemberton H, Altomare D, Pla S, Loor M, Markiewicz P, Yaqub M, Buckley C, Frisoni GB, Nordberg A, Payoux P, Stephens A, Gismondi R, Visser PJ, Ford L, Schmidt M, Birck C, Georges J, Mett A, Walker Z, Boada M, Drzezga A, Vandenberghe R, Hanseeuw B, Jessen F, Schöll M, Ritchie C, Lopes Alves I, Gispert JD, Barkhof F. The amyloid imaging for the prevention of Alzheimer's disease consortium: A European collaboration with global impact. Front Neurol 2023; 13:1063598. [PMID: 36761917 PMCID: PMC9907029 DOI: 10.3389/fneur.2022.1063598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 01/22/2023] Open
Abstract
Background Amyloid-β (Aβ) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and 'Small and Medium-sized enterprises' (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population. The AMYPAD studies In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [18F]flutemetamol or [18F]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method. Results AMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BP ND ), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging Aβ burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine. Future steps The AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community.
Collapse
Affiliation(s)
- Lyduine E. Collij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands,Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands,*Correspondence: Lyduine E. Collij ✉
| | | | - David Valléz García
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands,Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Ilona Bader
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands,Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | | | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands,Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Hugh Pemberton
- Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), Université de Genève, Geneva, Switzerland
| | - Sandra Pla
- Synapse Research Management Partners, Barcelona, Spain
| | - Mery Loor
- Synapse Research Management Partners, Barcelona, Spain
| | - Pawel Markiewicz
- Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | | | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), Université de Genève, Geneva, Switzerland
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center of Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Payoux
- Department of Nuclear Medicine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Andrew Stephens
- Life Molecular Imaging GmbH, Berlin, Baden-Württemberg, Germany
| | | | - Pieter Jelle Visser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Lisa Ford
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | | - Anja Mett
- GE Healthcare, Amersham, United Kingdom
| | - Zuzana Walker
- Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Mercé Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alexander Drzezga
- Department of Psychiatry, University Hospital of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Rik Vandenberghe
- Faculty of Medicine, University Hospitals Leuven, Leuven, Brussels, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience (IONS), Université Catholique de Louvain, Brussels, Belgium
| | - Frank Jessen
- Department of Psychiatry, University Hospital of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Juan Domingo Gispert
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands,Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands,Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, United Kingdom
| |
Collapse
|
7
|
Collij LE, Salvadó G, de Wilde A, Altomare D, Shekari M, Gispert JD, Bullich S, Stephens A, Barkhof F, Scheltens P, Bouwman F, van der Flier WM. Quantification of [
18
F]florbetaben amyloid‐PET imaging in a mixed memory clinic population: The ABIDE project. Alzheimers Dement 2022. [DOI: 10.1002/alz.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lyduine E. Collij
- Department of Radiology and Nuclear Medicine Amsterdam University Medical Center Amsterdam Neuroscience Amsterdam The Netherlands
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC) Pasqual Maragall Foundation Barcelona Spain
- Clinical Memory Research Unit Department of Clinical Sciences Lund University Malmö Sweden
| | - Arno de Wilde
- Department of Neurology Alzheimer Center Amsterdam Amsterdam Neuroscience Vrije Universiteit Amsterdam Amsterdam UMC Amsterdam The Netherlands
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE) University of Geneva Geneva Switzerland
- Memory Center Geneva University Hospitals Geneva Switzerland
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC) Pasqual Maragall Foundation Barcelona Spain
- IMIM (Hospital del Mar Medical Research Institute) Barcelona Spain
- Pompeu Fabra University Barcelona Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC) Pasqual Maragall Foundation Barcelona Spain
- IMIM (Hospital del Mar Medical Research Institute) Barcelona Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Madrid Spain
| | | | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine Amsterdam University Medical Center Amsterdam Neuroscience Amsterdam The Netherlands
- Centre for Medical Image Computing and Queen Square Institute of Neurology UCL London UK
| | - Philip Scheltens
- Department of Neurology Alzheimer Center Amsterdam Amsterdam Neuroscience Vrije Universiteit Amsterdam Amsterdam UMC Amsterdam The Netherlands
| | - Femke Bouwman
- Department of Neurology Alzheimer Center Amsterdam Amsterdam Neuroscience Vrije Universiteit Amsterdam Amsterdam UMC Amsterdam The Netherlands
| | - Wiesje M. van der Flier
- Department of Neurology Alzheimer Center Amsterdam Amsterdam Neuroscience Vrije Universiteit Amsterdam Amsterdam UMC Amsterdam The Netherlands
- Department of Epidemiology & Data Science Amsterdam Neuroscience Vrije Universiteit Amsterdam Amsterdam UMC Amsterdam The Netherlands
| |
Collapse
|
8
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|