1
|
Pappas C, Bauer CE, Zachariou V, Maillard P, Caprihan A, Shao X, Wang DJ, Gold BT. MRI free water mediates the association between water exchange rate across the blood brain barrier and executive function among older adults. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-15. [PMID: 38947942 PMCID: PMC11211995 DOI: 10.1162/imag_a_00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation. An additional variable that measures water in extracellular space and impacts cognition, MRI free water (FW), may help explain prior findings. A total of 94 older adults without dementia (Mean age = 74.17 years, 59.6% female) underwent MRI (DP-ASL, diffusion weighted imaging (DWI)) and cognitive assessment. Mean kw was computed across the whole brain (WB), and mean white matter FW was computed across all white matter. The relationship between kw and three cognitive domains (executive function, processing speed, memory) was tested using multiple linear regression. FW was tested as a mediator of the kw-cognitive relationship using the PROCESS macro. A positive association was found between WB kw and executive function [F(4,85) = 7.81, p < .001, R2= 0.269; β = .245, p = .014]. Further, this effect was qualified by subsequent results showing that FW was a mediator of the WB kw-executive function relationship (indirect effect results: standardized effect = .060, bootstrap confidence interval = .0006 to .1411). Results suggest that lower water exchange rate (kw) may contribute to greater total white matter (WM) FW which, in turn, may disrupt executive function. Taken together, proper fluid clearance at the BBB contributes to higher-order cognitive abilities.
Collapse
Affiliation(s)
- Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Christopher E. Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Pauline Maillard
- Department of Neurology, University of California at Davis, Davis, CA, United States
- Center for Neurosciences, University of California at Davis, Davis, CA, United States
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J.J. Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian T. Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Abdolahi F, Yu V, Varma R, Zhou X, Wang RK, D'Orazio LM, Zhao C, Jann K, Wang DJ, Kashani AH, Jiang X. Retinal perfusion is linked to cognition and brain MRI biomarkers in Black Americans. Alzheimers Dement 2024; 20:858-868. [PMID: 37800578 PMCID: PMC10917050 DOI: 10.1002/alz.13469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION We investigated whether retinal capillary perfusion is a biomarker of cerebral small vessel disease and impaired cognition among Black Americans, an understudied group at higher risk for dementia. METHODS We enrolled 96 Black Americans without known cognitive impairment. Four retinal perfusion measures were derived using optical coherence tomography angiography. Neurocognitive assessment and brain magnetic resonance imaging (MRI) were performed. Multiple linear regression analyses were performed. RESULTS Lower retinal capillary perfusion was correlated with worse Oral Symbol Digit Test (P < = 0.005) and Fluid Cognition Composite scores (P < = 0.02), but not with the Crystallized Cognition Composite score (P > = 0.41). Lower retinal perfusion was also correlated with higher free water and peak width of skeletonized mean diffusivity, and lower fractional anisotropy (all P < 0.05) on MRI (N = 35). DISCUSSION Lower retinal capillary perfusion is associated with worse information processing, fluid cognition, and MRI biomarkers of cerebral small vessel disease, but is not related to crystallized cognition.
Collapse
Affiliation(s)
- Farzan Abdolahi
- Department of OphthalmologyUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| | - Victoria Yu
- Department of OphthalmologyUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| | - Rohit Varma
- Southern California Eye InstituteCHA Hollywood Presbyterian Medical CenterLos AngelesCaliforniaUSA
| | - Xiao Zhou
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Ruikang K. Wang
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
| | - Lina M. D'Orazio
- Department of NeurologyUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| | - Chenyang Zhao
- Laboratory of FMRI TechnologyStevens Neuroimaging and Informatics InstituteUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| | - Kay Jann
- Laboratory of FMRI TechnologyStevens Neuroimaging and Informatics InstituteUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| | - Danny J. Wang
- Department of NeurologyUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
- Laboratory of FMRI TechnologyStevens Neuroimaging and Informatics InstituteUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| | - Amir H. Kashani
- Department of OphthalmologyWilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Xuejuan Jiang
- Department of OphthalmologyUniversity of Southern California Keck School of MedicineLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Saks DG, Smith EE, Sachdev PS. National and international collaborations to advance research into vascular contributions to cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100195. [PMID: 38226362 PMCID: PMC10788430 DOI: 10.1016/j.cccb.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Cerebrovascular disease is the second most common cause of cognitive disorders, usually referred to as vascular contributions to cognitive impairment and dementia (VCID) and makes some contribution to about 70 % of all dementias. Despite its importance, research into VCID has lagged as compared to cognitive impairment due to Alzheimer's disease. There is an increasing appreciation that closing this gap requires large national and international collaborations. This paper highlights 24 notable large-scale national and international efforts to advance research into VCID (MarkVCID, DiverseVCID, DISCOVERY, COMPASS-ND, HBC, RHU SHIVA, UK DRI Vascular Theme, STROKOG, Meta VCI Map, ISGC, ENIGMA-Stroke Recovery, CHARGE, SVDs@target, BRIDGET, CADASIL Consortium, CADREA, AusCADASIL, DPUK, DPAU, STRIVE, HARNESS, FINESSE, VICCCS, VCD-CRE Delphi). These collaborations aim to investigate the effects on cognition from cerebrovascular disease or impaired cerebral blood flow, the mechanisms of action, means of prevention and avenues for treatment. Consensus groups have been developed to harmonise global approaches to VCID, standardise terminology and inform management and treatment, and data sharing is becoming the norm. VCID research is increasingly a global collaborative enterprise which bodes well for rapid advances in this field.
Collapse
Affiliation(s)
- Danit G Saks
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Harding IH, Ryan J, Heritier S, Spark S, Flanagan Z, McIntyre R, Anderson CS, Naismith SL, Chong TTJ, O'Sullivan M, Egan G, Law M, Zoungas S. STAREE-Mind Imaging Study: a randomised placebo-controlled trial of atorvastatin for prevention of cerebrovascular decline and neurodegeneration in older individuals. BMJ Neurol Open 2023; 5:e000541. [PMID: 37920607 PMCID: PMC10619122 DOI: 10.1136/bmjno-2023-000541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Cerebrovascular disease and neurodegeneration are causes of cognitive decline and dementia, for which primary prevention options are currently lacking. Statins are well-tolerated and widely available medications that potentially have neuroprotective effects. The STAREE-Mind Imaging Study is a randomised, double-blind, placebo-controlled clinical trial that will investigate the impact of atorvastatin on markers of neurovascular health and brain atrophy in a healthy, older population using MRI. This is a nested substudy of the 'Statins for Reducing Events in the Elderly' (STAREE) primary prevention trial. Methods Participants aged 70 years or older (n=340) will be randomised to atorvastatin or placebo. Comprehensive brain MRI assessment will be undertaken at baseline and up to 4 years follow-up, including structural, diffusion, perfusion and susceptibility imaging. The primary outcome measures will be change in brain free water fraction (a composite marker of vascular leakage, neuroinflammation and neurodegeneration) and white matter hyperintensity volume (small vessel disease). Secondary outcomes will include change in perivascular space volume (glymphatic drainage), cortical thickness, hippocampal volume, microbleeds and lacunae, prefrontal cerebral perfusion and white matter microstructure. Ethics and dissemination Academic publications from this work will address the current uncertainty regarding the impact of statins on brain structure and vascular integrity. This study will inform the utility of repurposing these well-tolerated, inexpensive and widely available drugs for primary prevention of neurological outcomes in older individuals. Ethics approval was given by Monash University Human Research Ethics Committee, Protocol 12206. Trial registration number ClinicalTrials.gov Identifier: NCT05586750.
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Stephane Heritier
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simone Spark
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Zachary Flanagan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Richard McIntyre
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Craig S Anderson
- Global Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Sharon L Naismith
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael O'Sullivan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sophia Zoungas
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|