1
|
Berezowska S, Maillard M, Keyter M, Bisig B. Pulmonary squamous cell carcinoma and lymphoepithelial carcinoma - morphology, molecular characteristics and differential diagnosis. Histopathology 2024; 84:32-49. [PMID: 37936498 DOI: 10.1111/his.15076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Squamous cell carcinoma (SCC) comprises one of the major groups of non-small-cell carcinoma of the lung, and is subtyped into keratinising, non-keratinising and basaloid SCC. SCC can readily be diagnosed using histomorphology alone in keratinising SCC. Confirmatory immunohistochemical analyses should always be applied in non-keratinising and basaloid tumours to exclude differential diagnoses, most prominently adenocarcinoma and high-grade neuroendocrine carcinoma, which may have important therapeutic consequences. According to the World Health Organisation (WHO) classification 2015, the diagnosis of SCC can be rendered in resections of morphologically ambiguous tumours with squamous immunophenotype. In biopsies and cytology preparations in the same setting the current guidelines propose a diagnosis of 'non-small-cell carcinoma, favour SCC' in TTF1-negative and p40-positive tumours to acknowledge a possible sampling bias and restrict extended immunohistochemical evaluation in order to preserve tissue for molecular testing. Most SCC feature a molecular 'tobacco-smoke signature' with enrichment in GG > TT mutations, in line with the strong epidemiological association of SCC with smoking. Targetable mutations are extremely rare but they do occur, in particular in younger and non- or light-smoking patients, warranting molecular investigations. Lymphoepithelial carcinoma (LEC) is a poorly differentiated SCC with a syncytial growth pattern and a usually prominent lymphoplasmacytic infiltrate and frequent Epstein-Barr virus (EBV) association. In this review, we describe the morphological and molecular characteristics of SCC and LEC and discuss the most pertinent differential diagnoses.
Collapse
Affiliation(s)
- Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Marie Maillard
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mark Keyter
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Schmitt F, Lozano MD. Molecular/biomarker testing in lung cytology: A practical approach. Diagn Cytopathol 2023; 51:59-67. [PMID: 36098379 DOI: 10.1002/dc.25054] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022]
Abstract
The increasing comprehension of molecular mechanisms underlying lung cancer and the discovery of targetable genomic alterations has dramatically change the pathological approach to lung cancer, especially non-small cell lung cancer (NSCLC). This unstoppable knowledge has taken pathologists to the leading front on lung cancer management. This is especially relevant in the world of cytopathology where "doing more with less" is a daily challenge. Nowadays with a growing number of predictive biomarkers needed to manage patients with NSCLC, there has been a paradigm shift in care and handling of diagnostic samples. One of the main emphasis and interest relies on the utilization of cytologic samples and small biopsies for not only diagnostic purposes but also for ancillary testing. Moreover, lung cytopathology is in continuous evolutions with implementation of new diagnostic techniques, new tools, and facing new challenges. The goal of this paper will be to provide the reader with the necessary concepts than can be used to exploit the cytological samples in order to use these samples for comprehensive diagnosis and relevant ancillary testing purposes.
Collapse
Affiliation(s)
- Fernando Schmitt
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Cintesis@RISE, Health Research Network, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Maria D Lozano
- Department of Pathology, Clinica University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
3
|
Lozano MD, Benito A, Labiano T, Pijuan L, Tejerina E, Torres H, Gómez-Román J. Recommendations for optimizing the use of cytology in the diagnosis and management of patients with lung cancer. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2023; 56:58-68. [PMID: 36599601 DOI: 10.1016/j.patol.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 01/31/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the oncological entities with the greatest evolution in molecular diagnosis due to the large number of diagnostic biomarkers and new treatments approved by international regulatory agencies. An accurate, early diagnosis using the least amount of tissue is the goal for the establishing and developing precision medicine for these patients. Rapid on-site evaluation (ROSE) provides cytological samples of optimal quantity and quality for a complete diagnosis of NSCLC. The usefulness of cytological samples has been demonstrated, not only for massive parallel sequencing but also for the quantification of the expression of programmed death-ligand 1 (PD-L1) and tumour mutational burden (TMB). Pre-analytical, analytical, and post-analytical recommendations are made for the management and appropriate use of cytological samples in order to obtain all the information necessary for the diagnosis and treatment of patients with NSCLC according to current quality parameters.
Collapse
Affiliation(s)
| | | | | | - Lara Pijuan
- Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Eva Tejerina
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Héctor Torres
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Javier Gómez-Román
- Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
4
|
Sharma T, Das P, Panigrahi R, Rao CM, Rath J. Immunocytochemical Evaluation of TTF-1, Napsin-A, and p-63 for Subtyping of Non-Small Cell Lung Carcinoma and Clinicopathological Correlation. J Cytol 2022; 39:180-187. [PMID: 36605876 PMCID: PMC9809422 DOI: 10.4103/joc.joc_5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Carcinoma of lung is the most common cause of cancer-associated mortality worldwide. About 70% of lung cancer cases are unresectable and present in advanced stages. So, cytology and small core needle biopsy specimen are available for diagnostic as well as prognostication workup. Subtyping of non-small cell lung cancer (NSCLC) is essential for the treatment and further workup study. For this, immunocytochemistry (ICC) plays a crucial role that helps in early diagnosis. Subtyping of NSCLC from cytology samples using ICC markers like TTF-1, Napsin-A, and p63 and their clinicopathological correlation are the aims of the study. Materials and Methods This ambispective study was conducted in the pathology department of a tertiary care hospital of eastern India for a 2-year period from 2018 to 2020. In our study, 46 cytologically diagnosed cases of NSCLC were included. Subtyping was done by cytomorphology and correlated with ICC expression, histopathology, and clinicopathological parameters. Results In our study, adenocarcinoma (ADC) was the most common (32.61%) cancer. Most cases of ADC showed positive expression of TTF-1 and Napsin-A, and p63 was positive in most cases of squamous cell carcinoma (SCC). Concordance with cytomorphology and ICC was 87.50% and 81.81% with ADC and SCC, respectively. Cyto-ICC-histo concordance was observed in 85.51% of ADC and 66.66% of SCC cases. Sensitivity was 100%, 93.1%, and 100% for TTF-1, Napsin-A, and p63, respectively. Specificity of both TTF-1 and Napsin-A was 88.2% and for p63 was 93.8%. Conclusion In small biopsy along with cytology samples, ICC is cost-effective and plays an important role in early diagnosis along with management of NSCLC.
Collapse
Affiliation(s)
- Tarun Sharma
- Department of Pathology, Govt Medical College and Hospital, Chandigarh, India
| | - Prajna Das
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Ranjita Panigrahi
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - C. Mohan Rao
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Jayashree Rath
- Department of Pathology, Hi-Tech Medical College and Hospital, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Maddox A, Smart LM. Technical aspects of the use of cytopathological specimens for diagnosis and predictive testing in malignant epithelial neoplasms of the lung. Cytopathology 2021; 33:23-38. [PMID: 34717021 DOI: 10.1111/cyt.13072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is a leading cause of cancer mortality worldwide but recent years have seen a rapidly rising proportion of cases of advanced non-small cell carcinoma amenable to increasingly targeted therapy, initially based on the differential response to systemic treatment of tumours of squamous or glandular differentiation. In two-thirds of the cases, where patients present with advanced disease, both primary pathological diagnosis and biomarker testing is based on small biopsies and cytopathological specimens. The framework of this article is an overview of the technical aspect of each stage of the specimen pathway with emphasis on maximising potential for success when using small cytology samples. It brings together the current literature addressing pre-analytical and analytical aspects of specimen acquisition, performing rapid onsite evaluation, and undertaking diagnostic and predictive testing using immunocytochemistry and molecular platforms. The advantages and drawbacks of performing analysis on cell block and non-cell block specimen preparations is discussed.
Collapse
Affiliation(s)
- Anthony Maddox
- Department of Cellular Pathology, West Hertfordshire Hospitals NHS Trust, Hemel Hempstead Hospital, Hemel Hempstead, UK
| | - Louise M Smart
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
6
|
Kanber Y, Pusztaszeri M, Auger M. Immunocytochemistry for diagnostic cytopathology-A practical guide. Cytopathology 2021; 32:562-587. [PMID: 34033162 DOI: 10.1111/cyt.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
Cytological specimens, which are obtained by minimally invasive methods, are an excellent source of diagnostic material. Sometimes they are the only material available for diagnosis as well as for prognostic/predictive markers. When cytomorphology is not straightforward, ancillary tests may be required for a definitive diagnosis to guide clinical management. Immunocytochemistry (ICC) is the most common and practical ancillary tool used to reach a diagnosis when cytomorphology is equivocal, to differentiate entities with overlapping morphological features, and to determine the cell lineage and the site of origin of a metastatic neoplasm. Numerous immunomarkers are available, and some are expressed in multiple neoplasms. To rule out entities within a differential diagnosis, the use of more than one marker, sometimes panels, is necessary. ICC panels for diagnostic purposes should be customised based on the clinical context and cytomorphology, and the markers should be used judiciously to preserve material for additional tests for targeted therapies in the appropriate setting. This review offers a practical guide for the use of ICC for diagnostic cytopathology, covering the most commonly encountered non-hematolymphoid diagnostic scenarios in various body sites.
Collapse
Affiliation(s)
- Yonca Kanber
- Department of Pathology, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Marc Pusztaszeri
- Department of Pathology, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Manon Auger
- Department of Pathology, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Faber E, Grosu H, Sabir S, San Lucas FA, Barkoh BA, Bassett RL, Luthra R, Stewart J, Roy-Chowdhuri S. Adequacy of small biopsy and cytology specimens for comprehensive genomic profiling of patients with non-small-cell lung cancer to determine eligibility for immune checkpoint inhibitor and targeted therapy. J Clin Pathol 2021; 75:612-619. [PMID: 33952592 DOI: 10.1136/jclinpath-2021-207597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/03/2022]
Abstract
AIMS In advanced-stage non-small-cell lung cancer (NSCLC), incomplete genotyping for guideline-recommended genomic biomarkers poses a significant challenge to making informed and timely clinical decisions. We report our institution's experience in assessing the adequacy of small specimens for comprehensive genomic profiling for guideline-recommended lung cancer biomarker testing. METHODS We performed a retrospective evaluation of all image-guided procedures for NSCLC performed in our institution between October 2016 and July 2018, including core needle biopsy (CNB) and fine-needle aspiration (FNA) in patients who had undergone genomic profiling for lung cancer. Lung cancer biomarker adequacy, defined as successful testing of guideline-recommended biomarkers including, epidermal growth factor receptor (EGFR); serine/threonine protein kinase B-Raf (BRAF); anaplastic lymphoma kinase (ALK); proto-oncogene tyrosine protein kinase ROS (ROS1); Rearranged during Transfection (RET); Tyrosine protein kinase Met (MET); and programmed cell death ligand 1 (PD-L1), was evaluated. RESULTS A total of 865 cases were evaluated in this study, 785 of which included testing of all lung cancer biomarkers. Lung tissue was adequate for biomarker testing in 84% of cases; this rate increased to 87% when biomarker testing was combined with concurrently acquired FNA or CNB specimens. Biomarker testing success correlated strongly with DNA concentration (p<0.0001) and the use of 22G needles in endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) procedures (p=0.0035). Biomarker testing of CNB specimens showed a significantly higher success rate than did biomarker testing of cytology FNA specimens (p=0.0005). The adequacy of EBUS-TBNA samples was not significantly different from that of the transthoracic needle aspiration samples (p=0.40). Variables such as age, gender, lesion size, site, diagnosis and number of needle passes showed no significant correlation with success rates in lung cancer biomarker testing. CONCLUSION The growing numbers of therapeutic biomarkers in NSCLC requires judicious triage of limited-volume tissue from small specimens. Our study showed that thoracic small tissue specimens can be used successfully to provide prognostic and predictive information for the current guideline-recommended biomarkers for NSCLC in most cases.
Collapse
Affiliation(s)
- Erin Faber
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Horiana Grosu
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sharjeel Sabir
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Francis Anthony San Lucas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bedia A Barkoh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roland L Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Roy-Chowdhuri S. Immunocytochemistry of cytology specimens for predictive biomarkers in lung cancer. Transl Lung Cancer Res 2020; 9:898-905. [PMID: 32676355 PMCID: PMC7354113 DOI: 10.21037/tlcr.2019.12.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With a growing number of predictive biomarkers that have emerged in non-small cell lung carcinoma (NSCLC), there has been a paradigm shift in the management of these patients. Of the various predictive biomarker testing methods, immunohistochemistry (IHC) is the most widely available, cost-effective, and commonly used methods. However, most predictive IHC assays are validated primarily on formalin-fixed paraffin-embedded (FFPE) histologic tissue samples and translating these assays to cytologic specimens requires additional and rigorous validation. This is part due to the lack of standardized processing protocols in cytology resulting in a variety of preanalytic variables that can impact the antigenicity of antibodies used for predictive biomarker testing. The review article discusses the various preanalytical and analytical factors that impact immunocytochemistry (ICC) in cytologic specimens and summarizes the current published literature on ALK, ROS1, PD-L1, and other predictive biomarker ICC in cytology.
Collapse
Affiliation(s)
- Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Jain D, Nambirajan A, Borczuk A, Chen G, Minami Y, Moreira AL, Motoi N, Papotti M, Rekhtman N, Russell PA, Savic Prince S, Yatabe Y, Bubendorf L. Immunocytochemistry for predictive biomarker testing in lung cancer cytology. Cancer Cytopathol 2019; 127:325-339. [PMID: 31050216 DOI: 10.1002/cncy.22137] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
With an escalating number of predictive biomarkers emerging in non-small cell lung carcinoma (NSCLC), immunohistochemistry (IHC) is being used as a rapid and cost-effective tool for the screening and detection of many of these markers. In particular, robust IHC assays performed on formalin-fixed, paraffin-embedded (FFPE) tumor tissue are widely used as surrogate markers for ALK and ROS1 rearrangements and for detecting programmed death ligand 1 (PD-L1) expression in patients with advanced NSCLC; in addition, they have become essential for treatment decisions. Cytology samples represent the only source of tumor in a significant proportion of patients with inoperable NSCLC, and there is increasing demand for predictive biomarker testing on them. However, the wide variation in the types of cytology samples and their preparatory methods, the use of alcohol-based fixatives that interfere with immunochemistry results, the difficulty in procurement of cytology-specific controls, and the uncertainty regarding test validity have resulted in underutilization of cytology material for predictive immunocytochemistry (ICC), and most cytopathologists limit such testing to FFPE cell blocks (CBs). The purpose of this review is to: 1) analyze various preanalytical, analytical, and postanalytical factors influencing ICC results; 2) discuss measures for validation of ICC protocols; and 3) summarize published data on predictive ICC for ALK, ROS1, EGFR gene alterations and PD-L1 expression on lung cancer cytology. Based on our experience and from a review of the literature, we conclude that cytology specimens are in principal suitable for predictive ICC, but proper optimization and rigorous quality control for high-quality staining are essential, particularly for non-CB preparations.
Collapse
Affiliation(s)
- Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuko Minami
- Department of Pathology, National Hospital Organization, Ibaraki Higashi National Hospital, Ibaraki, Japan
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, New York
| | - Noriko Motoi
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prudence A Russell
- Anatomical Pathology Department, St. Vincent's Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
10
|
Yatabe Y, Dacic S, Borczuk AC, Warth A, Russell PA, Lantuejoul S, Beasley MB, Thunnissen E, Pelosi G, Rekhtman N, Bubendorf L, Mino-Kenudson M, Yoshida A, Geisinger KR, Noguchi M, Chirieac LR, Bolting J, Chung JH, Chou TY, Chen G, Poleri C, Lopez-Rios F, Papotti M, Sholl LM, Roden AC, Travis WD, Hirsch FR, Kerr KM, Tsao MS, Nicholson AG, Wistuba I, Moreira AL. Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. J Thorac Oncol 2019; 14:377-407. [PMID: 30572031 PMCID: PMC6422775 DOI: 10.1016/j.jtho.2018.12.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023]
Abstract
Since the 2015 WHO classification was introduced into clinical practice, immunohistochemistry (IHC) has figured prominently in lung cancer diagnosis. In addition to distinction of small cell versus non-small cell carcinoma, patients' treatment of choice is directly linked to histologic subtypes of non-small cell carcinoma, which pertains to IHC results, particularly for poorly differentiated tumors. The use of IHC has improved diagnostic accuracy in the classification of lung carcinoma, but the interpretation of IHC results remains challenging in some instances. Also, pathologists must be aware of many interpretation pitfalls, and the use of IHC should be efficient to spare the tissue for molecular testing. The International Association for the Study of Lung Cancer Pathology Committee received questions on practical application and interpretation of IHC in lung cancer diagnosis. After discussions in several International Association for the Study of Lung Cancer Pathology Committee meetings, the issues and caveats were summarized in terms of 11 key questions covering common and important diagnostic situations in a daily clinical practice with some relevant challenging queries. The questions cover topics such as the best IHC markers for distinguishing NSCLC subtypes, differences in thyroid transcription factor 1 clones, and the utility of IHC in diagnosing uncommon subtypes of lung cancer and distinguishing primary from metastatic tumors. This article provides answers and explanations for the key questions about the use of IHC in diagnosis of lung carcinoma, representing viewpoints of experts in thoracic pathology that should assist the community in the appropriate use of IHC in diagnostic pathology.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.
| | - Sanja Dacic
- Department of Pathology University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Arne Warth
- Institute of Pathology, Cytopathology, and Molecular Pathology MVZ UEGP Giessen, Wetzlar, Limburg, Germany
| | - Prudence A Russell
- Anatomical Pathology Department, St. Vincent's Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Sylvie Lantuejoul
- Department of Biopathology, Centre Léon Bérard, Grenoble Alpes University, Lyon, France
| | - Mary Beth Beasley
- Department of Pathology, Mount Sinai Medical Center, New York, New York
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan and IRCCS MultiMedica, Milan, Italy
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kim R Geisinger
- Department of Pathology, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Masayuki Noguchi
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Johan Bolting
- Department of Immunology Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jin-Haeng Chung
- Department of Pathology and Respiratory Center, Seoul National University Bundang Hospital, Seongnam city, Gyeonggi- do, Republic of Korea
| | - Teh-Ying Chou
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Republic of China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Claudia Poleri
- Office of Pathology Consultants, Buenos Aires, Argentina
| | - Fernando Lopez-Rios
- Laboratorio de Dianas Terapeuticas, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fred R Hirsch
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, Scotland, United Kingdom
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield National Health Service Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, M. D. Anderson Cancer Center, Houston, Texas
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, New York
| |
Collapse
|
11
|
Abstract
Background: The role played by cytology in primary diagnosis is undeniable. With improved management protocols and targeted therapy, the need for accurate diagnosis has become mandatory. Immunochemistry and molecular techniques are increasingly being used on limited tissue samples. Aims: This study was conducted to find out the impact of immunocytochemistry (ICC) on cytology material in cytology practice. Materials and Methods: Immunochemistry was done on alcohol-fixed smears and cell-block preparations. It was done with i6000 BioGenex autostainer using BioGenex reagents. Results: A total of 148 cases occurring over a period of 3 years (September 2010-June 2013) were analyzed. Staining was done on cytology smears in 77 cases and on cell-block sections in 71 cases. ICC helped in diagnosis in 8 cases, confirmed the diagnosis in 26 cases, helped in subtyping in 60 cases, and helped in prognostication in 6 cases. ICC has altered the diagnosis in two cases. It was noncontributory in 43 cases, and the material was inadequate in three cases. Conclusion: In 102 cases (69%), ICC proved to be a useful adjunct in the diagnosis and prognostication; hence, its use is recommended in practice to aid in cytology services.
Collapse
Affiliation(s)
- Pooja Chavali
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Aruna Kumari Prayaga
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Ashwani Tandon
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | | |
Collapse
|
12
|
Roy-Chowdhuri S, Aisner DL, Allen TC, Beasley MB, Borczuk A, Cagle PT, Capelozzi V, Dacic S, da Cunha Santos G, Hariri LP, Kerr KM, Lantuejoul S, Mino-Kenudson M, Moreira A, Raparia K, Rekhtman N, Sholl L, Thunnissen E, Tsao MS, Vivero M, Yatabe Y. Biomarker Testing in Lung Carcinoma Cytology Specimens: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab Med 2016; 140:1267-1272. [PMID: 27081878 DOI: 10.5858/arpa.2016-0091-sa] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The advent of targeted therapy in lung cancer has heralded a paradigm shift in the practice of cytopathology with the need for accurately subtyping lung carcinoma, as well as providing adequate material for molecular studies, to help guide clinical and therapeutic decisions. The variety and versatility of cytologic-specimen preparations offer significant advantages to molecular testing; however, they frequently remain underused. Therefore, evaluating the utility and adequacy of cytologic specimens is critical, not only from a lung cancer diagnosis standpoint but also for the myriad ancillary studies that are necessary to provide appropriate clinical management. A large fraction of lung cancers are diagnosed by aspiration or exfoliative cytology specimens, and thus, optimizing strategies to triage and best use the tissue for diagnosis and biomarker studies forms a critical component of lung cancer management. This review focuses on the opportunities and challenges of using cytologic specimens for molecular diagnosis of lung cancer and the role of cytopathology in the molecular era.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yasushi Yatabe
- From the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Roy-Chowdhuri); the Department of Pathology, University of Colorado Cancer Center, Denver (Dr Aisner); the Department of Pathology, University of Texas Medical Branch, Galveston (Dr Allen); the Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York (Dr Beasley); the Department of Pathology, Weill Cornell Medical College, New York (Drs Borczuk and Cagle); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Cagle); the Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil (Dr Capelozzi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Dacic); the Department of Pathology, University Health Network, Princess Margaret Cancer Centre, and the University of Toronto, Toronto, Ontario, Canada (Drs da Cunha Santos and Tsao); the Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston (Drs Hariri and Mino-Kenudson); the Department of Pathology, Aberdeen University Medical School, and Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Scotland, United Kingdom (Dr Kerr); the Department of Biopathology, Centre Léon Bérard, Lyon, and J Fourier University, Institut National de la Santé et de la Recherche Médicale-Institut Albert Bonniot, Grenoble, France (Dr Lantuejoul); the Department of Pathology, New York University, New York (Dr Moreira); the Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois (Dr Raparia); the Department of Pathology, Memorial Sloan Kettering Cancer Center, New York (Dr Rekhtman); the Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston (Drs Sholl and Vivero); the Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands (Dr Thunnissen); and the Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan (Dr Yatabe)
| |
Collapse
|
13
|
Michael CW, Davidson B. Pre-analytical issues in effusion cytology. Pleura Peritoneum 2016; 1:45-56. [PMID: 30911607 DOI: 10.1515/pp-2016-0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
Effusions or body cavity fluids are amongst the most commonly submitted samples to the cytology laboratory. Knowledge of proper collection, storage, preservation and processing techniques is essential to ensure proper handling and successful analysis of the sample. This article describes how the effusions should be collected and proper conditions for submission. The different processing techniques to extract the cellular material and prepare slides satisfactory for microscopic evaluation are described such as direct smears, cytospins, liquid based preparations and cell blocks. The article further elaborates on handling the specimens for additional ancillary testing such as immunostaining and molecular tests, including predictive ones, as well as future research approaches.
Collapse
Affiliation(s)
- Claire W Michael
- Department of Pathology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
14
|
Rodriguez EF, Monaco SE. Recent advances in the pathology and molecular genetics of lung cancer: A practical review for cytopathologists. J Am Soc Cytopathol 2016; 5:252-265. [PMID: 31042502 DOI: 10.1016/j.jasc.2016.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 11/17/2022]
Abstract
Lung cancer is one of the most common causes of cancer-related death worldwide. Better understanding of the molecular genetic characteristics of non-small cell lung carcinoma (NSCLC), particularly adenocarcinoma, has opened the opportunity for targeted therapies. With the different molecular abnormalities and the different responses to new targeted therapies based on the histological subtype of NSCLC, there came a need to further classify NSCLC into squamous cell carcinoma and adenocarcinoma, and to perform the appropriate molecular testing in these different subtypes to guide management decisions. Given that approximately 70% of lung cancer patients have only small biopsies or cytology specimens available, incorporating the testing of these specimens into the cytopathology laboratory has been crucial. Herein, we review current concepts and recommendations on NSCLC subtyping and molecular testing that are relevant for the cytopathology community.
Collapse
Affiliation(s)
- Erika F Rodriguez
- Department of Pathology, Johns Hopkins University, Carnegie 469-Pathology, 600 North Wolfe Street, Baltimore, Maryland.
| | - Sara E Monaco
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Advanced Diagnostic Techniques. CANINE AND FELINE CYTOLOGY 2016. [PMCID: PMC7158337 DOI: 10.1016/b978-1-4557-4083-3.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
|
16
|
Gurda GT, Zhang L, Wang Y, Chen L, Geddes S, Cho WC, Askin F, Gabrielson E, Li QK. Utility of five commonly used immunohistochemical markers TTF-1, Napsin A, CK7, CK5/6 and P63 in primary and metastatic adenocarcinoma and squamous cell carcinoma of the lung: a retrospective study of 246 fine needle aspiration cases. Clin Transl Med 2015; 4:16. [PMID: 25977750 PMCID: PMC4417108 DOI: 10.1186/s40169-015-0057-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fine needle aspiration (FNA) biopsy plays a critical role in the diagnosis and staging of lung primary and metastatic lung carcinoma. Accurate subclassification of adenocarcinoma (ADC) and/or squamous cell carcinoma (SqCC) is crucial for the targeted therapy. However, the distinction between ADC and SqCC may be difficult in small FNA specimens. Here, we have retrospectively evaluated the utility of TTF-1, Napsin A, CK7, P63 and CK5/6 immunohistochemical (IHC) markers in the distinguishing and subclassification of ADC and SqCC. METHODS A total of 246 FNA cases were identified by a computer search over a two-year period, including 102 primary NSCLC and 144 primary NSCLC which had metastasized to other sites. The immunostaining patterns of TTF-1, Napsin A, CK7, P63 and CK5/6 were correlated with the histological diagnosis of the tumor. RESULTS In 72 primary ADCs, TTF-1, Napsin A and CK7 showed a sensitivity and specificity of 84.5%/96.4%, 92.0%/100%, and 93.8%/50.0%. In 30 primary SqCCs, CK5/6 and P63 showed a sensitivity and specificity of 100%/77.8% and 91.7%/78.3%. In 131 metastatic ADCs, Napsin A showed the highest specificity (100%), versus TTF-1 (87.5%) and CK7 (25%) but decreased sensitivity (67.8% versus 86.9% and 100%); whereas in 13 metastatic SqCCs, CK5/6 and P63 showed a sensitivity/specificity of 100%/84.6% and 100%/68.4%. Bootstrap analysis showed that the combination of TTF-1/CK7, TTF-1/Napsin A and TTF-1/CK7/Napsin A had a sensitivity/specificity of 0.960/0.732, 0.858/0.934, 0.972/0.733 for primary lung ADCs and 0.992/0.642, 0.878/0.881, 0.993/0.618 for metastatic lung ADCs. CONCLUSIONS Our study demonstrated that IHC markers had variable sensitivity and specificity in the subclassification of primary and metastatic ADC and SqCC. Based on morphological findings, an algorithm with the combination use of markers aided in the subclassification of NSCLCs in difficult cases.
Collapse
Affiliation(s)
- Grzegorz T Gurda
- />The Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Lei Zhang
- />The Department of Pathology and Division of Cytopathology, University of Chicago Hospitals, Chicago, IL 60637 USA
| | - Yuting Wang
- />The Department of Chemistry, Magdalen College,, University of Oxford, Oxford, OX1 4 AU UK
| | - Li Chen
- />The Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Susan Geddes
- />The Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- />Department of Pathology, The Johns Hopkins Medical Institute, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224 USA
| | - William C Cho
- />The Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, SAR China
| | - Frederic Askin
- />The Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- />Department of Pathology, The Johns Hopkins Medical Institute, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224 USA
| | - Edward Gabrielson
- />The Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- />Department of Pathology, The Johns Hopkins Medical Institute, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224 USA
| | - Qing Kay Li
- />The Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- />Department of Pathology, The Johns Hopkins Medical Institute, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224 USA
| |
Collapse
|
17
|
The high diagnostic accuracy of combined test of thyroid transcription factor 1 and Napsin A to distinguish between lung adenocarcinoma and squamous cell carcinoma: a meta-analysis. PLoS One 2014; 9:e100837. [PMID: 25003505 PMCID: PMC4086931 DOI: 10.1371/journal.pone.0100837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
Background Accurate classification of non-small cell lung cancer (NSCLC) using morphological features has several limitations. However, the use of thyroid transcription factor 1 (TTF-1) and Napsin A as markers for the identification of various subtypes of NSCLC has shown promise. This meta-analysis was designed to evaluate the diagnostic value of combined TTF-1 and Napsin A test to distinguish lung adenocarcinoma from squamous cell carcinoma. Methods The Medline, EMBASE and Web of Science databases were searched, along with the reference lists of relevant articles (up to May 4, 2014). Ten studies containing 1,446 subjects were identified. The sensitivity, specificity, diagnostic odds ratio (DOR) and area under the summary receiver operating characteristics curve (AUC) were calculated to estimate the combined diagnostic value of TTF-1 and Napsin A. Results The pooled sensitivity and specificity were 0.76 (95% CI: 0.69–0.83) and 1.00 (95% CI: 0.92–1.00), respectively. The positive and negative likelihood ratios were 877.60 (95% CI: 8.40–91533.40) and 0.24 (95% CI: 0.18–0.32). The DOR was 3719 (95% CI: 33–414884). The AUC was 0.92 (95%CI: 0.89–0.94). The patient's location was a source of heterogeneity for sensitivity. The patient's location, the study's sample size and the threshold used to determine positive staining were consistently found to be sources of heterogeneity for specificity in subgroup analyses and meta-regression. Conclusions The combined test of TTF-1 and Napsin A presents a promising alternative method, useful to distinguish between lung adenocarcinoma and squamous cell carcinoma.
Collapse
|
18
|
Fischer AH, Schwartz MR, Moriarty AT, Wilbur DC, Souers R, Fatheree L, Booth CN, Clayton AC, Kurtyz DFI, Padmanabhan V, Crothers BA. Immunohistochemistry practices of cytopathology laboratories: a survey of participants in the College of American Pathologists Nongynecologic Cytopathology Education Program. Arch Pathol Lab Med 2014; 138:1167-72. [PMID: 24840035 DOI: 10.5858/arpa.2013-0259-cp] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Immunohistochemistry (IHC) is important for cytology but poses special challenges because preanalytic conditions may differ from the conditions of IHC-positive controls. OBJECTIVE To broadly survey cytology laboratories to quantify preanalytic platforms for cytology IHC and identify problems with particular platforms or antigens. To discover how validation guidelines for HER2 testing have affected cytology. DESIGN A voluntary survey of cytology IHC practices was sent to 1899 cytology laboratories participating in the College of American Pathologists Nongynecologic Cytopathology Education Program in the fall of 2009. RESULTS A total of 818 laboratories (43%) responded to the survey by April 2010. Three hundred fourty-five of 791 respondents (44%) performed IHC on cytology specimens. Seventeen different fixation and processing platforms prior to antibody reaction were reported. A total of 59.2% of laboratories reported differences between the platforms for cytology specimens and positive controls, but most (155 of 184; 84%) did not alter antibody dilutions or antigen retrieval for cytology IHC. When asked to name 2 antibodies for which staining conditions differed between cytology and surgical samples, there were 18 responses listing 14 antibodies. A total of 30.6% of laboratories performing IHC offered HER2 testing before publication of the 2007 College of American Pathologists/American Society of Clinical Oncologists guidelines, compared with 33.6% afterward, with increased performance of testing by reference laboratories. Three laboratories validated a nonformalin HER2 platform. CONCLUSIONS The platforms for cytology IHC and positive controls differ for most laboratories, yet conditions are uncommonly adjusted for cytology specimens. Except for the unsuitability of air-dried smears for HER2 testing, the survey did not reveal evidence of systematic problems with any antibody or platform.
Collapse
Affiliation(s)
- Andrew H Fischer
- From the Department of Pathology, University of Massachusetts Memorial Health Care, Worcester (Dr Fischer); the Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas (Dr Schwartz); the Department of Pathology, AmeriPath Indiana, Indianapolis (Dr Moriarty); the Department of Pathology, Massachusetts General Hospital, Boston (Dr Wilbur); the Departments of Statistics/Biostatistics (Ms Souers) and Cytology Surveys (Ms Fatheree), College of American Pathologists, Northfield, Illinois; the Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, Ohio (Dr Booth); the Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota (Dr Clayton); the Department of Cytology, Wisconsin State Laboratory of Hygiene, Madison (Dr Kurtyz); the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Padmanabhan); and the Department of Pathology and Area Laboratory Services, Walter Reed Army Medical Center, Washington, District of Columbia (Dr Crothers)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
VanderLaan PA, Wang HH, Majid A, Folch E. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA): An overview and update for the cytopathologist. Cancer Cytopathol 2014; 122:561-76. [DOI: 10.1002/cncy.21431] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Paul A. VanderLaan
- Department of Pathology, Division of Cytopathology, Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Helen H. Wang
- Department of Pathology, Division of Cytopathology, Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Adnan Majid
- Department of Surgery, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Erik Folch
- Department of Surgery, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
20
|
Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 2013; 51:42-87. [PMID: 24129895 DOI: 10.1177/0300985813505879] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused mainly on the characterization of neoplasms, immunohistochemistry (IHC) today is used in the investigation of a broad range of disease processes with applications in diagnosis, prognostication, therapeutic decisions to tailor treatment to an individual patient, and investigations into the pathogenesis of disease. This review addresses the technical aspects of immunohistochemistry (and, to a lesser extent, immunocytochemistry) with attention to the antigen-antibody reaction, optimal fixation techniques, tissue processing considerations, antigen retrieval methods, detection systems, selection and use of an autostainer, standardization and validation of IHC tests, preparation of proper tissue and reagent controls, tissue microarrays and other high-throughput systems, quality assurance/quality control measures, interpretation of the IHC reaction, and reporting of results. It is now more important than ever, with these sophisticated applications, to standardize the entire IHC process from tissue collection through interpretation and reporting to minimize variability among laboratories and to facilitate quantification and interlaboratory comparison of IHC results.
Collapse
Affiliation(s)
- J A Ramos-Vara
- Animal Disease Diagnostic Laboratory and Department of Comparative Pathobiology, Purdue University, 406 South University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
21
|
Roh MH. Triage of Cytologic Direct Smears for Ancillary Studies: A Case-Based Illustration and Review. Arch Pathol Lab Med 2013; 137:1185-90. [DOI: 10.5858/arpa.2013-0235-cr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In patients with advanced-stage cancer, small biopsies including fine-needle aspirates may be the only opportunity to obtain diagnostic tissue. In the current era of precision medicine, there is an increasing emphasis on the performance of ancillary molecular tests that can provide insights into prognosis and targeted chemotherapeutic options for patient management. Cytopathologists must meet this challenge by accurately diagnosing these fine-needle aspirates and ensuring that adequate material has been obtained for anticipated molecular studies. Herein, we describe a case of a fine-needle aspiration illustrating these principles, especially focusing on the utilization of direct smears for ancillary studies.
Collapse
Affiliation(s)
- Michael H. Roh
- From the Department of Pathology, University of Michigan Health System, Ann Arbor
| |
Collapse
|
22
|
Sakai Y, Nakai T, Ohbayashi C, Imagawa N, Yanagita E, Satake R, Nitta A, Kajimoto K, Sakuma T, Itoh T. Immunohistochemical profiling of ALK fusion gene-positive adenocarcinomas of the lung. Int J Surg Pathol 2013; 21:476-82. [PMID: 23794492 DOI: 10.1177/1066896913489345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our aim was to determine whether or not non-small-cell lung cancer is squamous cell carcinoma (SQCC); even in small samples, it is essential in view of the side effects attendant on new therapeutics. Lung adenocarcinoma (ADC) with the EML4-ALK fusion gene has been described as demonstrating mucinous cribriform/acinar growth and signet-ring cells, sometimes partially simulating SQCC. We investigated the relation among morphology, anaplastic lymphoma kinase (ALK) rearrangement, and immunophenotype in 321 ADCs by tissue microarray using SQCC markers cytokeratin (CK)5/6, CK14, desmocollin-3, desmoglein-3, p40, p63 versus ADC markers thyroid transcription factor (TTF)-1 and napsin A. Unlike 312 ALK-negative ADCs, 9 ALK-positive cases were negative for 4 SQCC markers. Only 1 ALK-positive ADC showing assertive morphology was positive for CK5/6 and p63 as well as for TTF-1 and napsin A. Coexpression of TTF-1/p40 was not observed, unlike that of TTF-1/p63 reported previously. There was no statistically significant difference between ALK-negative and ALK-positive ADC by immunohistochemical profiling.
Collapse
|