1
|
AbdElRaouf K, Farrag HS, El-Ganzuri MA, El-Sayed WM. A new bithiophene inhibited amyloid-β accumulation and enhanced cognitive function in the hippocampus of aluminum-induced Alzheimer's disease in adult rats. J Alzheimers Dis 2024; 102:1084-1098. [PMID: 39497290 DOI: 10.1177/13872877241295405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive and irreversible neurological disorder that gradually deteriorates an individual's ability to carry out even the simplest tasks. OBJECTIVE This study was undertaken to investigate the potential therapeutic efficacy of a novel bithiophene in a rat model of aluminum-induced AD pathology. METHODS A total of 108 adult male albino rats weighing 160 ± 20 g, were randomly assigned to six groups: (1) a control group administered DMSO, (2) group receiving a high dose of bithiophene (1 mg/kg), (3) a model group received AlCl3 (100 mg/kg), those rats were then treated by either (4) bithiophene low dose (0.5 mg/kg), (5) high dose (1 mg/kg), or (6) memantine (20 mg/kg). RESULTS Low dose bithiophene treatment was a promising strategy for mitigating oxidative stress and improving synaptic plasticity. This was demonstrated by reductions in malondialdehyde level, and increased activities of superoxide dismutase and catalase, and elevated glutathione content. Likewise, low dose bithiophene enhanced synaptic plasticity through a reduction in excitatory glutamate and norepinephrine levels, while increasing dopamine. Moreover, bithiophene significantly downregulated the expression of GSAP, GSK3-β, and p53, which are implicated in AD progression. This treatment also decreased caspase 3 and amyloid-β (Aβ1-42) accumulation in the hippocampus. Finally, behavioral assessments revealed that low dose bithiophene significantly enhanced learning abilities, as proved by Morris water maze. CONCLUSIONS Low dose bithiophene mitigated AD through ameliorating oxidative stress, promoting synaptic plasticity, inhibiting the Aβ accumulation, and enhancing the cognitive functions in a rat model.
Collapse
Affiliation(s)
- Kholoud AbdElRaouf
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Canet G, Gratuze M, Zussy C, Bouali ML, Diaz SD, Rocaboy E, Laliberté F, El Khoury NB, Tremblay C, Morin F, Calon F, Hébert SS, Julien C, Planel E. Age-dependent impact of streptozotocin on metabolic endpoints and Alzheimer's disease pathologies in 3xTg-AD mice. Neurobiol Dis 2024; 198:106526. [PMID: 38734152 DOI: 10.1016/j.nbd.2024.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease with a complex origin, thought to involve a combination of genetic, biological and environmental factors. Insulin dysfunction has emerged as a potential factor contributing to AD pathogenesis, particularly in individuals with diabetes, and among those with insulin deficiency or undergoing insulin therapy. The intraperitoneal administration of streptozotocin (STZ) is widely used in rodent models to explore the impact of insulin deficiency on AD pathology, although prior research predominantly focused on young animals, with no comparative analysis across different age groups. Our study aimed to fill this gap by analyzing the impact of insulin dysfunction in 7 and 23 months 3xTg-AD mice, that exhibit both amyloid and tau pathologies. Our objective was to elucidate the age-specific consequences of insulin deficiency on AD pathology. STZ administration led to insulin deficiency in the younger mice, resulting in an increase in cortical amyloid-β (Aβ) and tau aggregation, while tau phosphorylation was not significantly affected. Conversely, older mice displayed an unexpected resilience to the peripheral metabolic impact of STZ, while exhibiting an increase in both tau phosphorylation and aggregation without significantly affecting amyloid pathology. These changes were paralleled with alterations in signaling pathways involving tau kinases and phosphatases. Several markers of blood-brain barrier (BBB) integrity declined with age in 3xTg-AD mice, which might have facilitated a direct neurotoxic effect of STZ in older mice. Overall, our research confirms the influence of insulin signaling dysfunction on AD pathology, but also advises careful interpretation of data related to STZ-induced effects in older animals.
Collapse
Affiliation(s)
- Geoffrey Canet
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Maud Gratuze
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Institute of Neurophysiopathology (INP), University of Aix-Marseille, CNRS UMR 7051, 13385 Marseille, France.
| | - Charleine Zussy
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Mohamed Lala Bouali
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Sofia Diego Diaz
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Emma Rocaboy
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Francis Laliberté
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
| | - Noura B El Khoury
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; University of Balamand, Faculty of Arts and Sciences, Departement of Psychology, Tueini Building Kalhat, Al-Kurah, P.O. Box 100, Tripoli, Lebanon.
| | - Cyntia Tremblay
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Françoise Morin
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Frédéric Calon
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada; Laval University, Faculty of Pharmacy, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Sébastien S Hébert
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Carl Julien
- Research Center in Animal Sciences of Deschambault, Québec, QC G0A 1S0, Canada; Laval University, Faculty of Agricultural and Food Sciences, Québec, QC G1V 0A6, Canada.
| | - Emmanuel Planel
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
3
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
4
|
Sauna-like conditions or menthol treatment reduce tau phosphorylation through mild hyperthermia. Neurobiol Aging 2022; 113:118-130. [DOI: 10.1016/j.neurobiolaging.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
|
5
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
6
|
Pražienková V, Schirmer C, Holubová M, Železná B, Kuneš J, Galas MC, Maletínská L. Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. J Alzheimers Dis 2020; 67:1187-1200. [PMID: 30689580 DOI: 10.3233/jad-180837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by the accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. These tangles mainly consist of hyperphosphorylated tau protein. As it induces tau hyperphosphorylation in vitro and in vivo, hypothermia is a useful tool for screening potential neuroprotective compounds that ameliorate tau pathology. In this study, we examined the effect of prolactin-releasing peptide (PrRP), its lipidized analog palm11-PrRP31 and glucagon-like-peptide-1 agonist liraglutide, substances with anorexigenic and antidiabetic properties, on tau phosphorylation and on the main kinases and phosphatases involved in AD development. Our study was conducted in a neuroblastoma cell line SH-SY5Y and rat primary neuronal cultures under normothermic and hypothermic conditions. Hypothermia induced a significant increase in tau phosphorylation at the pThr212 and pSer396/pSer404 epitopes. The palmitoylated analogs liraglutide and palm11-PrRP31 attenuated tau hyperphosphorylation, suggesting their potential use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Claire Schirmer
- Université Lille, INSERM, CHU Lille, UMR - S 1172 - Jean Pierre Aubert Research Centre, Alzheimer and Tauopathies, Lille, France
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic.,Institute of Physiology, AS CR, Prague, Czech Republic
| | - Marie-Christine Galas
- Université Lille, INSERM, CHU Lille, UMR - S 1172 - Jean Pierre Aubert Research Centre, Alzheimer and Tauopathies, Lille, France
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| |
Collapse
|
7
|
Cokol NK, Erden K, Gunay FM, Dengiz C, Balci M. Synthesis of thienopyridinones via hydrazide-alkyne cyclization. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Mateus P, Delgado R. Zinc(ii) and copper(ii) complexes as tools to monitor/inhibit protein phosphorylation events. Dalton Trans 2020; 49:17076-17092. [DOI: 10.1039/d0dt03503c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A perspective on the advance of copper(ii) and zinc(ii) complexes of varied ligand architectures as binders of phosphorylated peptides/proteins and as sensors of phosphorylation reactions is presented.
Collapse
Affiliation(s)
- Pedro Mateus
- Laboratorio Associado para a Química Verde (LAQV)
- Rede de Química e Tecnologia (REQUIMTE)
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa (ITQB NOVA)
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
9
|
Administration of the benzodiazepine midazolam increases tau phosphorylation in the mouse brain. Neurobiol Aging 2018; 75:11-24. [PMID: 30508732 DOI: 10.1016/j.neurobiolaging.2018.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Preclinical studies have shown that anesthesia might accelerate the clinical progression of Alzheimer's disease (AD) and can have an impact on tau pathology, a hallmark of AD. Although benzodiazepines have been suggested to increase the risk of incident dementia, their impact on tau pathology in vivo is unknown. We thus examined the impact of midazolam, a benzodiazepine that is often administered perioperatively as an anxiolytic, on tau hyperphosphorylation in nontransgenic and in hTau mice, the latter a model of AD-like tau pathology. The acute administration of midazolam in C57BL/6 mice was associated with downregulation of protein phosphatase-1 and a significant and persistent increase in brain tau phosphorylation. In hTau mice, tau hyperphosphorylation was also observed; however, midazolam was neither associated with proaggregant changes nor spatial reference memory impairment. In C57BL/6 mice, chronic midazolam administration immediately increased hippocampal tau phosphorylation, and this effect was more pronounced in older mice. Interestingly, in young C57BL/6 mice, chronic midazolam administration induced hippocampal tau hyperphosphorylation, which persisted for 1 week. In hTau mice, chronic midazolam administration increased hippocampal tau phosphorylation and, although this was not associated with proaggregant changes, this correlated with a decreased capacity of tau to bind to preassembled microtubules. These findings suggest that midazolam can induce significant tau hyperphosphorylation in vivo, which persists well beyond recovery from its sedative effects. Moreover, it can disrupt one of tau's critical functions. Hence, future studies should focus on the impact of more prolonged or repeated benzodiazepine exposure on tau pathology and cognitive decline.
Collapse
|
10
|
Almeida MC, Carrettiero DC. Hypothermia as a risk factor for Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:727-735. [PMID: 30459036 DOI: 10.1016/b978-0-444-64074-1.00044-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer disease (AD), which is associated with chronic and progressive neurodegeneration, is the most prevalent cause of dementia linked to aging. Among the risk factors for AD, age stands as the greatest one, with the vast majority of people with AD being 65 years of age or older. Nevertheless, the pathophysiologic mechanisms underlying the link between aging and the development of AD, although not completely understood, might reveal important aspects for the understanding of this pathology. Thus, there is significant evidence that the impaired thermal homeostasis associated with normal aging leads to a variety of metabolic changes that could be associated with AD development. In this chapter, we assess the clinical and biochemical evidence implicating hypothermia as a risk factor for the development of AD and the impact of hypothermia on the two pathologic hallmarks of AD: accumulation of senile plaques of amyloid-beta and neurofibrillary tangles of aberrant hyperphosphorylated tau protein.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Natural and Human Sciences Center, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
| | | |
Collapse
|
11
|
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer's Disease. Front Aging Neurosci 2017; 9:118. [PMID: 28515688 PMCID: PMC5413582 DOI: 10.3389/fnagi.2017.00118] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Thomas C Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Chee W Chia
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| |
Collapse
|
12
|
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer's disease. Transl Res 2017; 183:26-40. [PMID: 28034760 PMCID: PMC5393926 DOI: 10.1016/j.trsl.2016.12.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
The links between systemic insulin resistance (IR), brain-specific IR, and Alzheimer's disease (AD) have been an extremely productive area of current research. This review will cover the fundamentals and pathways leading to IR, its connection to AD via cellular mechanisms, the most prominent methods and models used to examine it, an introduction to the role of extracellular vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical studies on the subject. To provide additional context, we also present a novel analysis of the spatial correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. Ultimately, examining the relation between IR and AD can be seen as a means of advancing the understanding of both disease states, with IR being a promising target for therapeutic strategies in AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD and the main strategies to pursue this goal.
Collapse
Affiliation(s)
- Thomas Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Roger Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD.
| |
Collapse
|
13
|
Sahu SN, Singh S, Shaw R, Shally S, Ram VJ, Pratap R. One-pot and step-wise synthesis of thieno[3,2-c]pyridin-4-ones. RSC Adv 2016. [DOI: 10.1039/c6ra17315b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Both one pot and step wise synthesis of methyl 3,5-diaminothieno[3,2-c]pyridin-4-one-2-carboxylates6have been delineated by the reaction of 6-aryl-4-methylthio-2H-pyran-2-one-3-carbonitriles3, methyl mercaptoacetate and hydrazine hydrate.
Collapse
Affiliation(s)
| | - Surjeet Singh
- Department of Chemistry
- University of Delhi
- Delhi
- India-110007
| | - Ranjay Shaw
- Department of Chemistry
- University of Delhi
- Delhi
- India-110007
| | - Shally Shally
- Department of Chemistry
- University of Delhi
- Delhi
- India-110007
| | - Vishnu Ji Ram
- Department of Chemistry
- University of Lucknow
- Lucknow
- India-226009
| | | |
Collapse
|
14
|
Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, Dorval V, Parsi S, Morin F, Planel E, Bennett DA, Fernandez-Gomez FJ, Sergeant N, Buée L, Tremblay MÈ, Calon F, Hébert SS. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 2015; 24:6721-35. [PMID: 26362250 PMCID: PMC4634376 DOI: 10.1093/hmg/ddv377] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease. Previously, we have shown that the microRNA (miRNA) cluster miR-132/212 is downregulated in tauopathies such as AD. Here, we report that miR-132/212 deficiency in mice leads to increased tau expression, phosphorylation and aggregation. Using reporter assays and cell-based studies, we demonstrate that miR-132 directly targets tau mRNA to regulate its expression. We identified GSK-3β and PP2B as effectors of abnormal tau phosphorylation in vivo. Deletion of miR-132/212 induced tau aggregation in mice expressing endogenous or human mutant tau, an effect associated with autophagy dysfunction. Conversely, treatment of AD mice with miR-132 mimics restored in part memory function and tau metabolism. Finally, miR-132 and miR-212 levels correlated with insoluble tau and cognitive impairment in humans. These findings support a role for miR-132/212 in the regulation of tau pathology in mice and humans and provide new alternatives for therapeutic development.
Collapse
Affiliation(s)
- Pascal Y Smith
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Francis Jolivette
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Veronique Dorval
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Sepideh Parsi
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Françoise Morin
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Francisco-Jose Fernandez-Gomez
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Nicolas Sergeant
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Luc Buée
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Faculté de Pharmacie, Université Laval, Québec, QC, Canada G1V 0A6
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences,
| |
Collapse
|
15
|
Whittington RA, Virág L, Gratuze M, Petry FR, Noël A, Poitras I, Truchetti G, Marcouiller F, Papon MA, El Khoury N, Wong K, Bretteville A, Morin F, Planel E. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro. Neurobiol Aging 2015; 36:2414-28. [PMID: 26058840 DOI: 10.1016/j.neurobiolaging.2015.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/19/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory.
Collapse
Affiliation(s)
- Robert A Whittington
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY, USA.
| | - László Virág
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Maud Gratuze
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Franck R Petry
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Anastasia Noël
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Isabelle Poitras
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Geoffrey Truchetti
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - François Marcouiller
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie-Amélie Papon
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Noura El Khoury
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Kevin Wong
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Alexis Bretteville
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | | | - Emmanuel Planel
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Neurosciences, CHUL, CRCHU, Québec, Québec, Canada
| |
Collapse
|
16
|
Tao G, Zhang J, Zhang L, Dong Y, Yu B, Crosby G, Culley DJ, Zhang Y, Xie Z. Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice. Anesthesiology 2014; 121:510-27. [PMID: 24787352 PMCID: PMC4165789 DOI: 10.1097/aln.0000000000000278] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Children with multiple exposures to anesthesia and surgery may have an increased risk of developing cognitive impairment. Sevoflurane is a commonly used anesthetic in children. Tau phosphorylation contributes to cognitive dysfunction. The authors therefore assessed the effects of sevoflurane on Tau phosphorylation and the underlying mechanisms in young mice. METHODS Six-day-old wild-type and Tau knockout mice were exposed to sevoflurane. The authors determined the effects of sevoflurane anesthesia on Tau phosphorylation, levels of the kinases and phosphatase related to Tau phosphorylation, interleukin-6 and postsynaptic density protein-95 in hippocampus, and cognitive function in both young wild-type and Tau knockout mice. RESULTS Anesthesia with 3% sevoflurane 2 h daily for 3 days induced Tau phosphorylation (257 vs. 100%, P = 0.0025, n = 6) and enhanced activation of glycogen synthase kinase 3β, which is the kinase related to Tau phosphorylation in the hippocampus of postnatal day-8 wild-type mice. The sevoflurane anesthesia decreased hippocampus postsynaptic density protein-95 levels and induced cognitive impairment in the postnatal day-31 mice. Glycogen synthase kinase 3β inhibitor lithium inhibited the sevoflurane-induced glycogen synthase kinase 3β activation, Tau phosphorylation, increased levels of interleukin-6, and cognitive impairment in the wild-type young mice. Finally, the sevoflurane anesthesia did not induce an increase in interleukin-6 levels, reduction in postsynaptic density protein-95 levels in hippocampus, or cognitive impairment in Tau knockout young mice. CONCLUSIONS These data suggested that sevoflurane induced Tau phosphorylation, glycogen synthase kinase 3β activation, increase in interleukin-6 and reduction in postsynaptic density protein-95 levels in hippocampus of young mice, and cognitive impairment in the mice. Future studies will dissect the cascade relation of these effects.
Collapse
Affiliation(s)
- Guorong Tao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China 200025
| | - Jie Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R China 430030
| | - Lei Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China 200025
| | - Gregory Crosby
- Department of Anesthesia, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Deborah J. Culley
- Department of Anesthesia, Brigham & Women’s Hospital and Harvard Medical School Boston, MA 02115
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| |
Collapse
|
17
|
2-(2-Phenylmorpholin-4-yl)pyrimidin-4(3H)-ones; A new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2013; 23:6933-7. [DOI: 10.1016/j.bmcl.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
|
18
|
6-(4-Pyridyl)pyrimidin-4(3H)-ones as CNS penetrant glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2013; 23:6928-32. [DOI: 10.1016/j.bmcl.2013.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 12/30/2022]
|
19
|
Whittington RA, Bretteville A, Dickler MF, Planel E. Anesthesia and tau pathology. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:147-55. [PMID: 23535147 PMCID: PMC3741335 DOI: 10.1016/j.pnpbp.2013.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration.
Collapse
Affiliation(s)
- Robert A. Whittington
- Department of Anesthesiology, Columbia University, New York, NY 10032,Corresponding Author: Robert A. Whittington, MD, Columbia University, College of Physicians and Surgeons, Department of Anesthesiology, 622 West 168th Street PH 5, New York, NY 10032, Tel: 212-305-1567, Fax: 212-305-0777,
| | - Alexis Bretteville
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2
| | - Maya F. Dickler
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2,Université Laval, Département de Psychiatrie et Neurosciences, Québec (QC), Canada, G1V 0A6
| |
Collapse
|
20
|
Feng Y, Xia Y, Yu G, Shu X, Ge H, Zeng K, Wang J, Wang X. Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H2
O2. J Neurochem 2013; 126:234-42. [DOI: 10.1111/jnc.12285] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/30/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ye Feng
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yiyuan Xia
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Guang Yu
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiji Shu
- Department of Pathology & Pathophysiology; School of Medicine; Jianghan University; Wuhan China
| | - Haoliang Ge
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Kuan Zeng
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jianzhi Wang
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaochuan Wang
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
21
|
Papon MA, El Khoury NB, Marcouiller F, Julien C, Morin F, Bretteville A, Petry FR, Gaudreau S, Amrani A, Mathews PM, Hébert SS, Planel E. Deregulation of protein phosphatase 2A and hyperphosphorylation of τ protein following onset of diabetes in NOD mice. Diabetes 2013; 62:609-17. [PMID: 22961084 PMCID: PMC3554372 DOI: 10.2337/db12-0187] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on τ phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display τ hyperphosphorylation. τ phosphorylation at τ-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, τ was hyperphosphorylated at the τ-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and τ hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated τ phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like τ hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology.
Collapse
Affiliation(s)
- Marie-Amélie Papon
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
| | - Noura B. El Khoury
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - François Marcouiller
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Carl Julien
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Françoise Morin
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
| | - Alexis Bretteville
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Franck R. Petry
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Simon Gaudreau
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Abdelaziz Amrani
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Paul M. Mathews
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
- New York University School of Medicine, New York, New York
| | - Sébastien S. Hébert
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Emmanuel Planel
- Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
- Corresponding author: Emmanuel Planel,
| |
Collapse
|
22
|
LIU YONGZHE, MA LI, JIAO LINBO, GAO MINGLONG, GUO WENZHI, CHEN LIN, PAN NINGLING, MA YAQUN. Mammalian target of rapamycin/p70 ribosomal S6 protein kinase signaling is altered by sevoflurane and/or surgery in aged rats. Mol Med Rep 2012; 12:8253-60. [DOI: 10.3892/mmr.2015.4444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 09/28/2015] [Indexed: 11/05/2022] Open
|
23
|
Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep 2012; 2:480. [PMID: 22761989 PMCID: PMC3386519 DOI: 10.1038/srep00480] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022] Open
Abstract
Tau hyperphosphorylation is one hallmark of Alzheimer's disease (AD) pathology. Pharmaceutical companies have thus developed kinase inhibitors aiming to reduce tau hyperphosphorylation. One obstacle in screening for tau kinase inhibitors is the low phosphorylation levels of AD-related phospho-epitopes in normal adult mice and cultured cells. We have shown that hypothermia induces tau hyperphosphorylation in vitro and in vivo. Here, we hypothesized that hypothermia could be used to assess tau kinase inhibitors efficacy. Hypothermia applied to models of biological gradual complexity such as neuronal-like cells, ex vivo brain slices and adult non-transgenic mice leads to tau hyperphosphorylation at multiple AD-related phospho-epitopes. We show that Glycogen Synthase Kinase-3 inhibitors LiCl and AR-A014418, as well as roscovitine, a cyclin-dependent kinase 5 inhibitor, decrease hypothermia-induced tau hyperphosphorylation, leading to different tau phosphorylation profiles. Therefore, we propose hypothermia-induced hyperphosphorylation as a reliable, fast, convenient and inexpensive tool to screen for tau kinase inhibitors.
Collapse
|
24
|
Pérez DI, Pistolozzi M, Palomo V, Redondo M, Fortugno C, Gil C, Felix G, Martinez A, Bertucci C. 5-Imino-1,2-4-thiadiazoles and quinazolines derivatives as glycogen synthase kinase 3β (GSK-3β) and phosphodiesterase 7 (PDE7) inhibitors: Determination of blood–brain barrier penetration and binding to human serum albumin. Eur J Pharm Sci 2012; 45:677-84. [DOI: 10.1016/j.ejps.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
25
|
5-Aryl-4-carboxamide-1,3-oxazoles: Potent and selective GSK-3 inhibitors. Bioorg Med Chem Lett 2012; 22:1989-94. [DOI: 10.1016/j.bmcl.2012.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/19/2022]
|
26
|
Gentile G, Bernasconi G, Pozzan A, Merlo G, Marzorati P, Bamborough P, Bax B, Bridges A, Brough C, Carter P, Cutler G, Neu M, Takada M. Identification of 2-(4-pyridyl)thienopyridinones as GSK-3β inhibitors. Bioorg Med Chem Lett 2011; 21:4823-7. [DOI: 10.1016/j.bmcl.2011.06.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 01/04/2023]
|
27
|
6-Amino-4-(pyrimidin-4-yl)pyridones: Novel glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2011; 21:1429-33. [DOI: 10.1016/j.bmcl.2011.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 01/12/2023]
|
28
|
Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HPG, Diniz BS, Gattaz WF. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer's disease. J Psychiatr Res 2011; 45:220-4. [PMID: 20576277 DOI: 10.1016/j.jpsychires.2010.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/26/2022]
Abstract
The disruption of glycogen synthase kinase 3-beta (GSK3B) homeostasis has implications in the pathophysiology of neuropsychiatric disorders, namely Alzheimer's disease (AD). GSK3B activity is increased within the AD brain, favoring the hyperphosphorylation of microtubule-associated protein Tau and the formation of neurofibrillary tangles. Such abnormality has also been detected in leukocytes of patients with cognitive disorders. The aim of the present study was to determine the expression of total and phosphorylated GSK3B at protein level in platelets of older adults with varying degrees of cognitive impairment, and to compare GSK3B activity in patients with AD, mild cognitive impairment (MCI) and healthy controls. Sixty-nine older adults were included (24 patients with mild to moderate AD, 22 patients with amnestic MCI and 23 elderly controls). The expression of platelet GSK3B (total- and Ser-9 phosphorylated GSK3B) was determined by Western blot. GSK3B activity was indirectly assessed by means of the proportion between phospho-GSK3B to total GSK3B (GSK3B ratio), the former representing the inactive form of the enzyme. Ser-9 phosphorylated GSK3B was significantly reduced in patients with MCI and AD as compared to controls (p=0.04). Platelet GSK3B ratio was significantly decreased in patients with MCI and AD (p=0.04), and positively correlated with scores on memory tests (r=0.298, p=0.01). In conclusion, we corroborate previous evidence of increased GSK activity in peripheral tissues of patients with MCI and AD, and further propose that platelet GSK may be an alternative peripheral biomarker of this abnormality, provided samples are adequately handled in order to preclude platelet activation.
Collapse
Affiliation(s)
- Orestes V Forlenza
- Laboratory of Neuroscience (LIM 27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010 São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
29
|
Whittington RA, Virág L, Marcouiller F, Papon MA, Khoury NBE, Julien C, Morin F, Emala CW, Planel E. Propofol directly increases tau phosphorylation. PLoS One 2011; 6:e16648. [PMID: 21304998 PMCID: PMC3031597 DOI: 10.1371/journal.pone.0016648] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/07/2011] [Indexed: 12/17/2022] Open
Abstract
In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology.
Collapse
Affiliation(s)
- Robert A. Whittington
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - László Virág
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | | | | | | | - Carl Julien
- Centre Hospitalier de l'Université Laval, Neurosciences, Québec, Canada
| | - Françoise Morin
- Centre Hospitalier de l'Université Laval, Neurosciences, Québec, Canada
| | - Charles W. Emala
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Emmanuel Planel
- Centre Hospitalier de l'Université Laval, Neurosciences, Québec, Canada
| |
Collapse
|
30
|
Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta. Mol Cell Biol 2010; 30:4626-43. [PMID: 20679486 DOI: 10.1128/mcb.01493-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer's disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110(-)(/)(-) mice. Our results show that hsp110(-)(/)(-) mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110(-)(/)(-) mice compared to brain extracts from wild-type mice. Mice deficient in the Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110(-)(/)(-) mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110(-)(/)(-) mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer's disease and other tauopathies.
Collapse
|
31
|
Motoi Y, Sahara N, Kambe T, Hattori N. Tau and neurodegenerative disorders. Biomol Concepts 2010; 1:131-45. [DOI: 10.1515/bmc.2010.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractThe mechanisms that render tau a toxic agent are still unclear, although increasing evidence supports the assertion that alterations of tau can directly cause neuronal degeneration. In addition, it is unclear whether neurodegeneration in various tauopathies occurs via a common mechanism or that specific differences exist. The aim of this review is to provide an overview of tauopathies from bench to bedside. The review begins with clinicopathological findings of familial and sporadic tauopathies. It includes a discussion of the similarities and differences between these two conditions. The second part concentrates on biochemical alterations of tau such as phosphorylation, truncation and acetylation. Although pathological phosphorylation of tau has been studied for many years, recently researchers have focused on the physiological role of tau during development. Finally, the review contains a summary of the significance of tauopathy model mice for research on neurofibrillary tangles, axonopathies, and synaptic alteration.
Collapse
Affiliation(s)
- Yumiko Motoi
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Naruhiko Sahara
- 2Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taiki Kambe
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Nobutaka Hattori
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| |
Collapse
|
32
|
Hébert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buée L, De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010; 19:3959-69. [PMID: 20660113 DOI: 10.1093/hmg/ddq311] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Type III RNase Dicer is responsible for the maturation and function of microRNA (miRNA) molecules in the cell. It is now well-documented that Dicer and the fine-tuning of the miRNA gene network are important for neuronal integrity. However, the underlying mechanisms involved in neuronal death, particularly in the adult brain, remain poorly defined. Here we show that the absence of Dicer in the adult forebrain is accompanied by a mixed neurodegenerative phenotype. Although neuronal loss is observed in the hippocampus, cellular shrinkage is predominant in the cortex. Interestingly, neuronal degeneration coincides with the hyperphosphorylation of endogenous tau at several epitopes previously associated with neurofibrillary pathology. Transcriptome analysis of enzymes involved in tau phosphorylation identified ERK1 as one of the candidate kinases responsible for this event in vivo. We further demonstrate that miRNAs belonging to the miR-15 family are potent regulators of ERK1 expression in mouse neuronal cells and co-expressed with ERK1/2 in vivo. Finally, we show that miR-15a is specifically downregulated in Alzheimer's disease brain. In summary, these results support the hypothesis that changes in the miRNA network may contribute to a neurodegenerative phenotype by affecting tau phosphorylation.
Collapse
|
33
|
Sakamoto T, Inoue MA, Ojida A, Hamachi I. Real-time fluorescence monitoring of GSK3β-catalyzed phosphoryation by use of a BODIPY-based Zn(II)–Dpa chemosensor. Bioorg Med Chem Lett 2009; 19:4175-7. [DOI: 10.1016/j.bmcl.2009.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 11/24/2022]
|
34
|
Pérez M, Pérez DI, Martínez A, Castro A, Gómez G, Fall Y. The first enantioselective synthesis of palinurin. Chem Commun (Camb) 2009:3252-4. [PMID: 19587930 DOI: 10.1039/b822679b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first enantioselective synthesis of palinurin has been accomplished starting from commercially available furaldehyde and (R)-methyl-3-hydroxy-2-methylpropionate; the key steps of the synthesis include the use of a chiral pyrrolidine to create the chiral tetronic moiety, and Horner-Wadsworth-Emmons, Wittig and Wittig-Horner reactions to construct the alkene units.
Collapse
Affiliation(s)
- Manuel Pérez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Vigo, 36200 Vigo, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Planel E, Bretteville A, Liu L, Virag L, Du AL, Yu WH, Dickson DW, Whittington RA, Duff KE. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB J 2009; 23:2595-604. [PMID: 19279139 DOI: 10.1096/fj.08-122424] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease and other tauopathies are characterized by the presence of intracellular neurofibrillary tangles composed of hyperphosphorylated, insoluble tau. General anesthesia has been shown to be associated with increased risk of Alzheimer's disease, and we have previously demonstrated that anesthesia induces hypothermia, which leads to overt tau hyperphosphorylation in the brain of mice regardless of the anesthetic used. To investigate whether anesthesia enhances the long-term risk of developing pathological forms of tau, we exposed a mouse model with tauopathy to anesthesia and monitored the outcome at two time points-during anesthesia, or 1 wk after exposure. We found that exposure to isoflurane at clinically relevant doses led to increased levels of phospho-tau, increased insoluble, aggregated forms of tau, and detachment of tau from microtubules. Furthermore, levels of phospho-tau distributed in the neuropil, as well as in cell bodies increased. Interestingly, the level of insoluble tau was increased 1 wk following anesthesia, suggesting that anesthesia precipitates changes in the brain that provoke the later development of tauopathy. Overall, our results suggest that anesthesia-induced hypothermia could lead to an acceleration of tau pathology in vivo that could have significant clinical implications for patients with early stage, or overt neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- Emmanuel Planel
- Axe Neurosciences, Centre Hospitalier de l'Université Laval, Université Laval, Québec, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saitoh M, Kunitomo J, Kimura E, Hayase Y, Kobayashi H, Uchiyama N, Kawamoto T, Tanaka T, Mol CD, Dougan DR, Textor GS, Snell GP, Itoh F. Design, synthesis and structure–activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg Med Chem 2009; 17:2017-29. [DOI: 10.1016/j.bmc.2009.01.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/30/2022]
|
37
|
Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron 2008; 57:680-90. [PMID: 18341989 DOI: 10.1016/j.neuron.2008.02.024] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 01/10/2008] [Accepted: 02/19/2008] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) has been implicated in Alzheimer's disease (AD) pathogenesis. Here, we demonstrate that overexpression of p25, an activator of cdk5, led to increased levels of BACE1 mRNA and protein in vitro and in vivo. A p25/cdk5 responsive region containing multiple sites for signal transducer and activator of transcription (STAT1/3) was identified in the BACE1 promoter. STAT3 interacts with the BACE1 promoter, and p25-overexpressing mice had elevated levels of pSTAT3 and BACE1, whereas cdk5-deficient mice had reduced levels. Furthermore, mice with a targeted mutation in the STAT3 cdk5 responsive site had lower levels of BACE1. Increased BACE levels in p25 overexpressing mice correlated with enhanced amyloidogenic processing that could be reversed by a cdk5 inhibitor. These data demonstrate a pathway by which p25/cdk5 increases the amyloidogenic processing of APP through STAT3-mediated transcriptional control of BACE1 that could have implications for AD pathogenesis.
Collapse
|
38
|
Kalia S, Sharma A, Kaith BS. Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide. J CHEM SCI 2008. [DOI: 10.1007/s12039-007-0077-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Yuan Y, Jin J, Yang B, Zhang W, Hu J, Zhang Y, Chen NH. Overexpressed alpha-synuclein regulated the nuclear factor-kappaB signal pathway. Cell Mol Neurobiol 2008; 28:21-33. [PMID: 17712623 DOI: 10.1007/s10571-007-9185-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
Alpha-synuclein is a presynaptic protein which is implicated in some neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, multiple systems atrophy, and Hallervorden-Spatz disease, and its overexpression contributes to the loss of dopaminergic neurons. Although the role of alpha-synuclein in these paradigms has been widely documented, its exact function is still elusive. And the dysfunction of the transcription factor nuclear factor (NF-kappaB) also exists in many neurodegenerative diseases. In this reason the purpose of this study was to investigate the molecular mechanism of alpha-synuclein's toxicity and its association with NF-kappaB by MTT assay, Western blot method, and luciferase assay. Results showed that overexpressed alpha-synuclein and 1-methyl-4-phenylpyridinium (MPP(+)) suppressed the SH-SY5Y cell viability and attenuate NF-kappaB-mediated luciferase expression significantly. Moreover, the impairment function was enhanced with the increase of alpha-synuclein protein level. We also found that overexpressed alpha-synuclein localized both in the cytoplasms and nuclei, down-regulated the anti-apoptotic Bcl-2 expression and up-regulated the pro-apoptotic glycogen synthase kinase 3beta (GSK3beta) protein level. In conclusion, all these findings mentioned above suggested that alpha-synuclein shared some toxic functional homology with neurotoxin MPP(+), and the proapoptotic effects of alpha-synuclein might be mediated at least in part by the impairment of NF-kappaB signaling pathway which involves GSK3beta.
Collapse
Affiliation(s)
- Yuhe Yuan
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Beijing, 100050, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Tsukane M, Yoshizaki C, Yamauchi T. Development and specific induction of apoptosis of cultured cell models overexpressing human tau during neural differentiation: Implication in Alzheimer's disease. Anal Biochem 2006; 360:114-22. [PMID: 17113559 DOI: 10.1016/j.ab.2006.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/02/2006] [Indexed: 11/19/2022]
Abstract
Apoptosis or programmed cell death is considered to be involved in neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by intracellular aggregates of hyperphosphorylated tau, a microtubule-associated protein. To investigate the induction of apoptosis by abnormal tau resembling AD, cultured cells may be useful tools. We developed a cell culture model and established NG108-15 and P19 cells stably transfected with human tau, naming them tau/NG and tau/P19 cells, respectively. Increased accumulation and phosphorylation of tau were observed during neural differentiation in tau/NG cells. Tau/P19 cells underwent drastic apoptosis during neural differentiation induced by retinoic acid (RA). Tau protein was distributed throughout the cytoplasm and in specific zones of the nucleus. The cytoplasmic tau was associated with microtubules, but the nucleic tau was observed to form clusters and was associated with RA receptor (RAR). The apoptosis induced by RA was inhibited by the treatment of glycogen synthase kinase 3 (GSK3) inhibitor in tau/P19 cells. We propose that translocation of tau into nucleus affects RA signaling in apoptosis via GSK3 in the cells. These cells are useful for monitoring the apoptosis by abundant tau and may be applied to investigate the molecular mechanism of apoptosis resembling AD.
Collapse
Affiliation(s)
- Mariko Tsukane
- Department of Biochemistry, Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | |
Collapse
|
41
|
Sato S, Cerny RL, Buescher JL, Ikezu T. Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J Neurochem 2006; 98:1573-84. [PMID: 16923168 DOI: 10.1111/j.1471-4159.2006.04059.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurofibrillary tangles, which are major pathological hallmarks of Alzheimer's disease (AD), are composed of paired helical filaments (PHFs) containing hyperphosphorylated tau. Specific kinases regulate tau phosphorylation and are closely linked to the pathogenesis of AD. We have characterized a human tau-tubulin kinase 1 (TTBK1) gene located on chromosome 6p21.1. TTBK1 is a serine/threonine/tyrosine kinase that is conserved among species and belongs to the casein kinase 1 superfamily. It is specifically expressed in the brain, especially in the cytoplasm of cortical and hippocampal neurons. TTBK1 phosphorylates tau proteins in both a Mg2+- and a Mn2+-dependent manner. Phosphopeptide mapping and immunoblotting analysis confirmed a direct tau phosphorylation by TTBK1 at Ser198, Ser199, Ser202 and Ser422, which are also phosphorylated in PHFs. TTBK1 also induces tau aggregation in human neuronal cells in a dose-dependent manner. We conclude that TTBK1 is a neuron-specific dual kinase involved in tau phosphorylation at AD-related sites and is also associated with tau aggregation.
Collapse
Affiliation(s)
- Shinji Sato
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | |
Collapse
|
42
|
Dessalew N, Patel DS, Bharatam PV. 3D-QSAR and molecular docking studies on pyrazolopyrimidine derivatives as glycogen synthase kinase-3beta inhibitors. J Mol Graph Model 2006; 25:885-95. [PMID: 17018257 DOI: 10.1016/j.jmgm.2006.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 11/21/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase, is a fascinating enzyme with diverse biological actions in intracellular signaling systems, making it an emerging target for diseases such as diabetes mellitus, cancer, chronic inflammation, bipolar disorders and Alzheimer's disease. It is important to inhibit GSK-3 selectively and the net effect of the GSK-3 inhibitors thus should be target specific, over other phylogenetically related kinases such as CDK-2. In the present work, we have carried out three-dimensional quantitative structure activity relationship (3D-QSAR) studies on novel class of pyrazolopyrimidine derivatives as GSK-3 inhibitors reported to have improved cellular activity. Docked conformation of the most active molecule in the series, which shows desirable interactions in the receptor, was taken as template for alignment of the molecules. Statistically significant CoMFA and CoMSIA models were generated using 49 molecules in training set. By applying leave-one-out (LOO) cross-validation study, r(cv)2 values of 0.53 and 0.48 for CoMFA and CoMSIA, respectively and non-cross-validated (r(ncv)2) values of 0.98 and 0.92 were obtained for CoMFA and CoMSIA models, respectively. The predictive ability of CoMFA and CoMSIA models was determined using a test set of 12 molecules which gave predictive correlation coefficients (r(pred)2) of 0.47 and 0.48, respectively, indicating good predictive power. Based upon the information derived from CoMFA and CoMSIA contour maps, we have identified some key features that explain the observed variance in the activity and have been used to design new pyrazolopyrimidine derivatives. The designed molecules showed better binding affinity in terms of estimated docking scores with respect to the already reported systems; hence suggesting that newly designed molecules can be more potent and selective towards GSK-3beta inhibition.
Collapse
Affiliation(s)
- Nigus Dessalew
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160 062 Punjab, India
| | | | | |
Collapse
|
43
|
Patel DS, Bharatam PV. New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies. J Comput Aided Mol Des 2006; 20:55-66. [PMID: 16622795 DOI: 10.1007/s10822-006-9036-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
Glycogen Synthase Kinase-3 is a regulatory serine/threonine kinase, which is being targeted for the treatment of a number of human diseases including type-2 diabetes mellitus, neurodegenerative diseases, cancer and chronic inflammation. Selective GSK-3 inhibition is an important requirement owing to the possibility of side effects arising from other kinases. A pharmacophore mapping strategy is employed in this work to identify new leads for selective GSK-3 inhibition. Ligands known to show selective GSK-3 inhibition were employed in generating a pharmacophore map using distance comparison method (DISCO). The derived pharmacophore map was validated using (i) important interactions involved in selective GSK-3 inhibitions, and (ii) an in-house database containing different classes of GSK-3 selective, non-selective and inactive molecules. New Lead identification was carried out by performing virtual screening using validated pharmacophoric query and three chemical databases namely NCI, Maybridge and Leadquest. Further data reduction was carried out by employing virtual filters based on (i) Lipinski's rule of 5 (ii) van der Waals bumps and (iii) restricting the number of rotatable bonds to seven. Final screening was carried out using FlexX based molecular docking study.
Collapse
Affiliation(s)
- Dhilon S Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, 160 062, Mohali, Punjab, India
| | | |
Collapse
|
44
|
Tatebayashi Y, Planel E, Chui DH, Sato S, Miyasaka T, Sahara N, Murayama M, Kikuchi N, Yoshioka K, Rivka R, Takashima A. c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis. FASEB J 2006; 20:762-4. [PMID: 16478768 DOI: 10.1096/fj.05-4362fje] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tauopathies such as Alzheimer disease (AD) probably involve a type of phosphorylation imbalance causing the accumulation of abnormally hyperphosphorylated tau in neurons and/or glias. Investigation of R406W tau mutation may provide insight into such abnormal tau hyperphosphorylation, since this mutation causes AD-like dementia and tauopathy in humans and because it has the unique ability to reduce tau phosphorylation in vitro and in cultured cells. Here we show that R406W mutation primarily disrupts tau phosphorylation at Ser404, a priming phosphorylation site of glycogen synthase kinase-3beta (GSK-3beta), thereby reducing subsequent GSK-3beta-mediated phosphorylation at the PHF-1 site (mostly Ser396). In contrast, c-jun N-terminal kinase (JNK) as activated in the mitotic phase directly hyperphosphorylates R406W tau at the PHF-1 site. This was confirmed by PHF-1 hyperphosphorylation of R406W tau in mitotic cells, its association with cytoplasmic JNK activation, and its inhibition by a JNK inhibitor, SP600125. These data unveil the unknown mechanisms of physiological tau phosphorylation at the PHF-1 site and suggest that cytoplasmic JNK activation may play an important role in the abnormal tau hyperphosphorylation associated with R406W tau mutation and in AD.
Collapse
Affiliation(s)
- Yoshitaka Tatebayashi
- Laboratory for Alzheimer's Disease, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vingtdeux V, Hamdane M, Gompel M, Bégard S, Drobecq H, Ghestem A, Grosjean ME, Kostanjevecki V, Grognet P, Vanmechelen E, Buée L, Delacourte A, Sergeant N. Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiol Dis 2005; 20:625-37. [PMID: 15936948 DOI: 10.1016/j.nbd.2005.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/11/2005] [Accepted: 05/02/2005] [Indexed: 12/22/2022] Open
Abstract
In Alzheimer's disease, the complex catabolism of amyloid precursor protein (APP) leads to the production of amyloid-beta (Abeta) peptide, the major component of amyloid deposits. APP is cleaved by beta- and alpha-secretases to generate APP carboxy-terminal fragments (CTFs). Abeta peptide and amyloid intracellular domain are resulting from the cleavage of APP-CTFs by the gamma-secretase. In the present study, we hypothesize that post-translational modification of APP-CTFs could modulate their processing by the gamma-secretase. Inhibition of the gamma-secretase was shown to increase the total amount of APP-CTFs. Moreover, we showed that this increase was more marked among the phosphorylated variants and directly related to the activity of the gamma-secretase, as shown by kinetics analyses. Phosphorylated CTFs were shown to associate to presenilin 1, a major protein of the gamma-secretase complex. The phosphorylation of CTFs at the threonine 668 resulting of the c-Jun N-terminal kinase activation was shown to enhance their degradation by the gamma-secretase. Altogether, our results demonstrated that phosphorylated CTFs can be the substrates of the gamma-secretase and that an increase in the phosphorylation of APP-CTFs facilitates their processing by gamma-secretase.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Department of Cerebral Aging and Neurodegeneration, INSERM U422, 1, place de Verdun, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 2005; 102:6990-5. [PMID: 15867159 PMCID: PMC1088065 DOI: 10.1073/pnas.0500466102] [Citation(s) in RCA: 510] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurofibrillary tangles composed of hyperphosphorylated, aggregated tau are a common pathological feature of tauopathies, including Alzheimer's disease. Abnormal phosphorylation of tau by kinases or phosphatases has been proposed as a pathogenic mechanism in tangle formation. To investigate whether kinase inhibition can reduce tauopathy and the degeneration associated with it in vivo, transgenic mice overexpressing mutant human tau were treated with the glycogen synthase kinase-3 (GSK-3) inhibitor lithium chloride. Treatment resulted in significant inhibition of GSK-3 activity. Lithium administration also resulted in significantly lower levels of phosphorylation at several epitopes of tau known to be hyperphosphorylated in Alzheimer's disease and significantly reduced levels of aggregated, insoluble tau. Administration of a second GSK-3 inhibitor also correlated with reduced insoluble tau levels, supporting the idea that lithium exerts its effect through GSK-3 inhibition. Levels of aggregated tau correlated strongly with degree of axonal degeneration, and lithium-chloride-treated mice showed less degeneration if administration was started during early stages of tangle development. These results support the idea that kinases are involved in tauopathy progression and that kinase inhibitors may be effective therapeutically.
Collapse
Affiliation(s)
- Wendy Noble
- Center for Dementia Research, Nathan S. Kline Institute, New York University, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sergeant N, Delacourte A, Buée L. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta Mol Basis Dis 2005; 1739:179-97. [PMID: 15615637 DOI: 10.1016/j.bbadis.2004.06.020] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 06/16/2004] [Indexed: 01/01/2023]
Abstract
Microtubule-associated Tau proteins are the basic component of intraneuronal and glial inclusions observed in many neurological disorders, the so-called tauopathies. Many etiological factors, phosphorylation, splicing, and mutations, relate Tau proteins to neurodegeneration. Molecular analysis has revealed that hyperphosphorylation and abnormal phosphorylation might be one of the important events in the process leading to tau intracellular aggregation. Specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution, could characterize five main classes of tauopathies. A direct correlation has been established between the regional brain distribution of tau pathology and clinical symptoms; for instance progressive involvement of neocortical areas is well correlated to the severity of dementia in Alzheimer's disease, overall suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. Recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies. Overall, a better knowledge of the etiological factors responsible for the aggregation of tau proteins in brain diseases is essential for development of future differential diagnosis and therapeutic strategies. They would hopefully find their application against Alzheimer's disease but also in all neurological disorders for which a dysfunction of Tau biology has been identified.
Collapse
|
48
|
Maeda Y, Nakano M, Sato H, Miyazaki Y, Schweiker SL, Smith JL, Truesdale AT. 4-Acylamino-6-arylfuro[2,3-d]pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Bioorg Med Chem Lett 2004; 14:3907-11. [PMID: 15225695 DOI: 10.1016/j.bmcl.2004.05.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 11/27/2022]
Abstract
Modeling studies of a furo[2,3-d]pyrimidine GSK-3 hit compound 1 superimposed onto the X-ray crystal structure of a legacy pyrazolo[3,4-c]pyridazine GSK-3 inhibitor 2 led to the identification of 4-acylamino-6-arylfuro[2,3-d]pyrimidine template 3. Synthesis of analogues based on template 3 has resulted in a number of potent and selective GSK-3beta inhibitors. The most potent and selective compound was the m-pyridyl analogue 24.
Collapse
Affiliation(s)
- Yutaka Maeda
- Chemistry Department, Tsukuba Research Laboratories, GlaxoSmithKline K.K., Wadai 43, Tsukuba, Ibaraki 300-4247, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Conde S, Pérez DI, Martínez A, Perez C, Moreno FJ. Thienyl and phenyl alpha-halomethyl ketones: new inhibitors of glycogen synthase kinase (GSK-3beta) from a library of compound searching. J Med Chem 2003; 46:4631-3. [PMID: 14561081 DOI: 10.1021/jm034108b] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycogen synthase kinase (GSK-3beta) plays a crucial role in Alzheimer's disease (AD). Its inhibition is a valid approach to the treatment of AD. In this initial letter, some thienyl and phenyl alpha-halomethyl ketones are described as new non-ATP competitive inhibitors of GSK-3beta. They are considered as lead compounds for designing and synthesizing new series, to carry out SAR studies, clear up the mechanism of action, and, in general, evaluate their therapeutical usefulness.
Collapse
Affiliation(s)
- Santiago Conde
- Instituto de Química Médica (CSIC), Juan de la Cierva 2, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
50
|
Hamdane M, Sambo AV, Delobel P, Bégard S, Violleau A, Delacourte A, Bertrand P, Benavides J, Buée L. Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex. J Biol Chem 2003; 278:34026-34. [PMID: 12826674 DOI: 10.1074/jbc.m302872200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among tau phosphorylation sites, some phosphoepitopes referred to as abnormal ones are exclusively found on tau aggregated into filaments in Alzheimer's disease. Recent data suggested that molecular mechanisms similar to those encountered during mitosis may play a role in abnormal tau phosphorylation. In particular, TG-3 phosphoepitope is associated with early stages of neurofibrillary tangles (NFTs). In this study, we reported a suitable cell model consisting of SH-SY5Y cells stably transfected with an inducible p25 expression vector. It allows investigation of tau phosphorylation by p25-Cdk5 kinase complex in a neuronal context and avoiding p25-induced cytotoxicity. Immunoblotting analyses showed that p25-Cdk5 strongly phosphorylates tau protein not only at the AT8 epitope but also at the AT180 epitope and at the Alzheimer's mitotic epitope TG-3. Further biochemical analyses showed that abnormal phosphorylated tau accumulated in cytosol as a microtubule-free form, suggesting its impact on tau biological activity. Since tau abnormal phosphorylation occurred in dividing cells, TG-3 immunoreactivity was also investigated in differentiated neuronal ones, and both TG-3-immunoreactive tau and nucleolin, another early marker for NFT, were also generated. These data suggest that p25-Cdk5 is responsible for the mitotic-like phosphoepitopes present in NFT and argue for a critical role of Cdk5 in neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Malika Hamdane
- INSERM U422, IMPRT, Place de Verdun, 59045 Lille, France and CNS Research, Aventis Pharma, 94400 Vitry Sur Seine, France
| | | | | | | | | | | | | | | | | |
Collapse
|