1
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
2
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Lei WY, Chang CY, Wu JH, Lin FH, Hsu Chen C, Chang CF, Lin YR, Wu HP. An Initial Attack of Urinary Stone Disease Is Associated with an Increased Risk of Developing New-Onset Irritable Bowel Syndrome: Nationwide Population-Based Study. PLoS One 2016; 11:e0157701. [PMID: 27337114 PMCID: PMC4919104 DOI: 10.1371/journal.pone.0157701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neurotransmitter pathways in irritable bowel syndrome (IBS) and urinary stone attacks are both related to serotonin, and each disease may be influenced by viscero-visceral hyperalgesia. However, the relationship between urinary tract stone disease and IBS has never been addressed. We aimed to investigate the risk of suffering new-onset IBS after an initial urinary stone attack using a nationwide database. METHODS A study group enrolled a total of 13,254 patients who were diagnosed with an initial urinary stone attack; a comparison group recruited 39,762 matched non-urinary stone participants during 2003 and 2007. We followed each patient for 3 years to determine new-onset IBS. We also used Cox proportional hazards models to analyze the risk of IBS between the study and comparison groups after modified by demographics, residence, patient characteristics and personal histories. RESULTS The occurrence rates of IBS were 3.3% (n = 440) and 2.6% (n = 1,034) respectively in the study and comparison groups. A covariate-adjusted hazard ratio (HR) of IBS in the study group that was 1.28 times greater (HR = 1.29, 95% CI, 1.15-1.44) than that in the comparison group was showed in the stratified Cox proportional analysis. The adjusted HRs of IBS did not decrease after considering demographics and past histories. The majority of IBS (30.5%) occurred within the first 6 months after the stone attack. CONCLUSION Patients with an initial urinary stone attack are at increased risk of developing new-onset IBS. The HRs of IBS did not decrease even after adjusting for patient demographics and past histories. Most importantly, 30.5% of IBS occurred within the first 6 months after the urinary stone attack.
Collapse
Affiliation(s)
- Wei-Yuan Lei
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Yu Chang
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Biological Science and Technology of Biochemical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Jr-Hau Wu
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Fei-Hung Lin
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng Hsu Chen
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-Fu Chang
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-Ping Wu
- Division of Pediatric General Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Kweishan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
5
|
Korogod SM, Kochenov AV, Makedonsky IA. Biophysical Mechanism of Parasympathetic Excitation of Urinary Bladder Smooth Muscle Cells: a Simulation Study. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9447-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
7
|
Abstract
This lecture is about the history of the purinergic signalling concept. It begins with reference to the paper by Paton & Vane published in 1963, which identified non-cholinergic relaxation in response to vagal nerve stimulation in several species, although they suggested that it might be due to sympathetic adrenergic nerves in the vagal nerve trunk. Using the sucrose gap technique for simultaneous mechanical and electrical recordings in smooth muscle (developed while in Feldberg's department in the National Institute for Medical Research) of the guinea-pig taenia coli preparation (learned when working in Edith Bülbring's smooth muscle laboratory in Oxford Pharmacology), we showed that the hyperpolarizations recorded in the presence of antagonists to the classical autonomic neurotransmitters, acetylcholine and noradrenaline, were inhibitory junction potentials in response to non-adrenergic, non-cholinergic neurotransmission, mediated by intrinsic enteric nerves controlled by vagal and sacral parasympathetic nerves. We then showed that ATP satisfied the criteria needed to identify a neurotransmitter released by these nerves. Subsequently, it was shown that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. The receptors for purines and pyrimidines were cloned and characterized in the early 1990 s, and immunostaining showed that most non-neuronal cells as well as nerve cells expressed these receptors. The physiology and pathophysiology of purinergic signalling is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- G. Burnstock: University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK and Department of Pharmacology, The University of Melbourne, Australia.
| |
Collapse
|
8
|
Purinergic mechanisms and pain--an update. Eur J Pharmacol 2013; 716:24-40. [PMID: 23524093 DOI: 10.1016/j.ejphar.2013.01.078] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
There is a brief summary of the background literature about purinergic signalling. The review then considers purinergic mechanosensory transduction involved in visceral, cutaneous and musculoskeletal nociception and on the roles played by P2X3, P2X2/3, P2X4, P2X7 and P2Y₁₂ receptors in neuropathic and inflammatory pain. Current developments of compounds for the therapeutic treatment of both visceral and neuropathic pain are discussed.
Collapse
|
9
|
Lembrechts R, Brouns I, Schnorbusch K, Pintelon I, Timmermans JP, Adriaensen D. Neuroepithelial bodies as mechanotransducers in the intrapulmonary airway epithelium: involvement of TRPC5. Am J Respir Cell Mol Biol 2012; 47:315-23. [PMID: 22461428 DOI: 10.1165/rcmb.2012-0068oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In rodent lungs, a major part of the myelinated vagal airway afferents selectively contacts pulmonary neuroepithelial bodies (NEBs). Because most myelinated vagal airway afferents concern physiologically characterized mechanoreceptors, the present study aimed at unraveling the potential involvement of NEB cells in transducing mechanosensory information from the airways to the central nervous system. Physiological studies were performed using confocal Ca(2+) imaging of airway epithelium in murine lung slices. Mechanical stimulation by short-term application of a mild hypoosmotic solution (230 mosmol) resulted in a selective, fast, reversible, and reproducible Ca(2+) rise in NEB cells. Other airway epithelial cells could only be activated using more severe hypoosmotic stimuli (< 200 mosmol). NEB cells selectively expressed the Ca(2+)-permeable osmo- and mechanosensitive transient receptor potential canonical channel 5 (TRPC5) in their apical membranes, whereas immunoreactivity for TRP vanilloid-4 and TRP melastatin-3 was abundant in virtually all other airway epithelial cells. Hypoosmotic activation of NEB cells was prevented by GsMTx-4, an inhibitor of mechanosensitive ion channels, and by SKF96365, an inhibitor of TRPC channels. Short application of gadolinium, reported to activate TRPC5 channels, evoked a transient Ca(2+) rise in NEB cells. Osmomechanical activation of NEB cells gave rise to a typical delayed activation of Clara-like cells due to the release of ATP from NEB cells. Because ATP may activate the NEB-associated P2X(2/3) ATP receptor expressing myelinated vagal afferents, the current observations strongly suggest that pulmonary NEB cells are fully equipped to initiate mechanosensory signal transduction to the central nervous system via a purinergic signaling pathway.
Collapse
Affiliation(s)
- Robrecht Lembrechts
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Burnstock G. Purinergic mechanosensory transduction and visceral pain. Mol Pain 2009; 5:69. [PMID: 19948030 PMCID: PMC2789721 DOI: 10.1186/1744-8069-5-69] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/30/2009] [Indexed: 02/01/2023] Open
Abstract
In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
11
|
Abstract
Although the concept of purinergic signalling arose from experiments designed to find the identity of the non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter in the gut, it has taken many years for the more general importance of the various roles of ATP as a physiological messenger in the gut to be recognized. Firstly, vasoactive intestitial polypeptide (VIP) and later nitric oxide (NO) were considered the NANC transmitter and it was only later, after the concept of cotransmission was established, that ATP, NO and VIP were recognized as cotransmitters in NANC nerves, although the proportions vary in different gut regions. Recently, many purinoceptor subtypes have been identified on myenteric, submucosal motor, sensory and interneurons involved in synaptic neurotransmission and neuromodulation and reflex activity of several kinds, including ascending excitatory and descending inhibitory reflex pathways. Nucleotide receptors have been shown to be expressed on enteric glial cells and interstitial cells of Cajal. Purinergic mechanosensory transduction, involving release of ATP from mucosal epithelial cells during distension to stimulate subepithelial nerve endings of intrinsic and extrinsic sensory nerves to modulate peristalsis and initiate nociception respectively, is attracting current attention. Exciting new areas of interest about purinergic signalling in the gut include: involvement of purines in development, ageing and regeneration, including the role of stem cells; studies of the involvement of nucleotides in the activity of the gut of invertebrates and lower vertebrates; and the pathophysiology of enteric purinergic signalling in diseases including irritable bowel syndrome, postoperative ileus, oesophageal reflux, constipation, diarrhoea, diabetes, Chaga's and Hirschprung's disease.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
12
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
13
|
Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006; 110:433-54. [PMID: 16226312 DOI: 10.1016/j.pharmthera.2005.08.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 12/22/2022]
Abstract
Following hints in the early literature about adenosine 5'-triphosphate (ATP) injections producing pain, an ion-channel nucleotide receptor was cloned in 1995, P2X3 subtype, which was shown to be localized predominantly on small nociceptive sensory nerves. Since then, there has been an increasing number of papers exploring the role of P2X3 homomultimer and P2X2/3 heteromultimer receptors on sensory nerves in a wide range of organs, including skin, tongue, tooth pulp, intestine, bladder, and ureter that mediate the initiation of pain. Purinergic mechanosensory transduction has been proposed for visceral pain, where ATP released from epithelial cells lining the bladder, ureter, and intestine during distension acts on P2X3 and P2X2/3, and possibly P2Y, receptors on subepithelial sensory nerve fibers to send messages to the pain centers in the brain as well as initiating local reflexes. P1, P2X, and P2Y receptors also appear to be involved in nociceptive neural pathways in the spinal cord. P2X4 receptors on spinal microglia have been implicated in allodynia. The involvement of purinergic signaling in long-term neuropathic pain and inflammation as well as acute pain is discussed as well as the development of P2 receptor antagonists as novel analgesics.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
14
|
Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 2006; 27:166-76. [PMID: 16487603 DOI: 10.1016/j.tips.2006.01.005] [Citation(s) in RCA: 378] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/22/2005] [Accepted: 01/25/2006] [Indexed: 02/07/2023]
Abstract
Purinergic signalling is now recognized to be involved in a wide range of activities of the nervous system, including neuroprotection, central control of autonomic functions, neural-glial interactions, control of vessel tone and angiogenesis, pain and mechanosensory transduction and the physiology of the special senses. In this article, I give a personal retrospective of the discovery of purinergic neurotransmission in the early 1970s, the struggle for its acceptance for approximately 20 years, the expansion into purinergic cotransmission and its eventual acceptance when receptor subtypes for ATP were cloned and characterized and when purinergic synaptic transmission between neurons in the brain and peripheral ganglia was described in the early 1990s. I also discuss the current status of the field, including recent interest in the pathophysiology of purinergic signalling and its therapeutic potential.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free & University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
15
|
Ziganshin AU, Khaziakhmetov DF, Ziganshina LE, Khaziakhmetova VN, Jourjikiya RK, Ziganshin BA, Giniyatova LR, Burnstock G. Varicose disease affects the P2 receptor-mediated responses of human greater saphenous vein. Vascul Pharmacol 2005; 42:17-21. [PMID: 15664883 DOI: 10.1016/j.vph.2004.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate in vitro the differences in P2 receptor mediated responses of human greater saphenous vein (GSV) taken from patients with varicose disease and obliterating atherosclerosis. Samples of the inguinal part of the GSV were taken from the patients who underwent phlebectomia operation due to varicose disease (n=9, VD group) or femoropoplitea bypass operation using auto-vein due to obliterating atherosclerosis of lower extremities (n=11, OA group). The mechanical responses of the isolated segments of GSV to P2 receptor agonists were tested using standard organ-bath technique. ATP (10(-6)-10(-4) M), ADP (10(-6)-10(-4) M) and alpha,betamethyleneATP (10(-8)-10(-5) M) caused concentration-dependent contractions of the veins of both groups, the latter agonist being approximately tenfold more active than first two. ATP at all concentrations tested, alpha,betamethyleneATP at concentrations of 10(-6) and 10(-5) M and ADP at a concentration of 10(-6) M produced significantly higher contractions of the GSV taken from OA group than from VD group. UTP (10(-6)-10(-4) M) caused concentration-dependent contractions of the veins taken from OA group, while in VD group this agonist was virtually without effect. Adenosine (10(-6)-10(-4) M) and 2-methylthio-ATP (10(-7)-10(-5) M) had no significant contractile activity in this tissue in both groups. It is concluded from this study that there are P2 receptor and adrenoceptor mediated contractions in human greater saphenous veins, which are impaired by varicose disease, in contrast to contractions produced by histamine and carbachol which are, if anything, enhanced.
Collapse
Affiliation(s)
- Airat U Ziganshin
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov Street, Kazan 420012, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang C, Vlajkovic S, Housley G, Braun N, Zimmermann H, Robson S, Sévigny J, Soeller C, Thorne P. C-terminal splicing of NTPDase2 provides distinctive catalytic properties, cellular distribution and enzyme regulation. Biochem J 2005; 385:729-36. [PMID: 15362980 PMCID: PMC1134748 DOI: 10.1042/bj20040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study provides functional characterization of alternative splicing of the NTPDase2 (ecto-nucleoside triphosphate diphosphohydrolase-2) involved in the regulation of extracellular nucleotide concentrations in a range of organ systems. A novel NTPDase2beta isoform produced by alternative splicing of the rat NTPDase2 gene provides an extended intracellular C-terminus and distinguishes itself from NTPDase2alpha isoform in gaining several intracellular protein kinase CK2 (casein kinase 2) phosphorylation sites and losing the intracellular protein kinase C motif. The plasmids containing NTPDase2alpha or NTPDase2beta cDNA were used to stably transfect Chinese-hamster ovary-S cells. Imaging studies showed that NTPDase2alpha was predominantly membrane-bound, whereas NTPDase2beta had combined cell surface and intracellular localization. alpha and beta isoforms showed variations in divalent cation dependence and substrate specificity for nucleoside-5'-triphosphates and nucleoside-5'-diphosphates. NTPDase2beta exhibited reduced ATPase activity and no apparent ADPase activity. NTPDase2 isoforms demonstrated similar sensitivity to inhibitors such as suramin and pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid, and differential regulation by protein kinases. NTPDase2beta was up-regulated by intracellular protein kinase CK2 phosphorylation, whereas NTPDase2alpha activity was down-regulated by protein kinase C phosphorylation. The results demonstrate that alternative coding of the intracellular C-terminal domain contributes distinctive phenotypic variation with respect to extracellular nucleotide specificity, hydrolysis kinetics, protein kinase-dependent intracellular regulation and protein trafficking. These findings advance the molecular physiology of this enzyme system by characterizing the contribution of the C-terminal domain to many of the enzyme's signature properties.
Collapse
Affiliation(s)
- Carol J. H. Wang
- *Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Park Road, Grafton, Private Bag 92019, Auckland, New Zealand
| | - Srdjan M. Vlajkovic
- *Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Park Road, Grafton, Private Bag 92019, Auckland, New Zealand
- To whom correspondence should be addressed (email )
| | - Gary D. Housley
- *Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Park Road, Grafton, Private Bag 92019, Auckland, New Zealand
| | - Norbert Braun
- †Biozentrum der J. W. Goethe-Universität, AK Neurochemie, Frankfurt am Main, Germany
| | - Herbert Zimmermann
- †Biozentrum der J. W. Goethe-Universität, AK Neurochemie, Frankfurt am Main, Germany
| | - Simon C. Robson
- ‡Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, U.S.A
| | - Jean Sévigny
- §Centre de Recherche en Rhumatologie et Immunologie, CHUQ, Université Laval, Sainte-Foy, Québec, Canada
| | - Christian Soeller
- *Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Park Road, Grafton, Private Bag 92019, Auckland, New Zealand
| | - Peter R. Thorne
- ∥Discipline of Audiology, Faculty of Medical and Health Sciences, The University of Auckland, Park Road, Grafton, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
17
|
Katugampola H, Burnstock G. Purinergic Signalling to Rat Ovarian Smooth Muscle: Changes in P2X Receptor Expression during Pregnancy. Cells Tissues Organs 2004; 178:33-47. [PMID: 15550758 DOI: 10.1159/000081091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2004] [Indexed: 11/19/2022] Open
Abstract
The expression of P2X and P2Y receptor subtypes in the smooth muscle of the rat ovary during the oestrus cycle and pregnancy was examined using immunohistochemistry. RT-PCR studies of P2X receptor mRNA were also carried out. In the non-pregnant rats, P2X2 receptor protein was dominant in the smooth muscle of perifollicular rings and blood vessels. P2X1 protein expression was seen on vascular smooth muscle too, but little, if any, was present on perifollicular smooth muscle. No changes in P2X1 or P2X2 receptor expression were seen during the oestrous cycle. During early and mid-late pregnancy, there was a switch from P2X2 to P2X1 receptor protein expression in the smooth muscle of the perifollicular ring; P2X1 receptors were also more prominently expressed than P2X2 receptors on ovarian vascular smooth muscle in non-pregnant animals, but during late pregnancy the expression of P2X2 receptors was found to equal that of the P2X1 receptors. There was a return to non-pregnant P2 receptor subtype distribution 2 days after birth. Ovarian vascular and perifollicular smooth muscle showed immunoreactivity for P2Y1, but not for P2X3-7, P2Y2 or P2Y4 receptors. P2Y1 receptor expression in ovarian smooth muscle of both blood vessels and follicular rings did not show significant changes during the oestrus cycle or pregnancy. RT-PCR studies indicated that P2X1 and P2X2 receptor mRNA was present in the ovary during pregnant and non-pregnant conditions. P2X4-6 receptor mRNA was also present in all stages studied, however no immunostaining showing receptor protein for these subtypes was seen on the ovarian sections examined. In summary, purinergic signalling to ovarian perifollicular smooth muscle changed from P2X2 to P2X1 receptors during pregnancy, while there was an increase in P2X2 receptor expression on vascular smooth muscle.
Collapse
Affiliation(s)
- Harshini Katugampola
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, UK
| | | |
Collapse
|
18
|
Vlajkovic SM, Housley GD, Muñoz DJB, Robson SC, Sévigny J, Wang CJH, Thorne PR. Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Neuroscience 2004; 126:763-73. [PMID: 15183524 DOI: 10.1016/j.neuroscience.2004.04.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 12/01/2022]
Abstract
Extracellular ATP acting via P2 receptors in the inner ear initiates a variety of signaling pathways that may be involved in noise-induced cochlear injury. Nucleoside triphosphate diphosphohydrolase (NTPDase)1/CD39 and NTPDase2/CD39L1 are key elements for regulation of extracellular nucleotide concentrations and P2 receptor signaling in the cochlea. This study characterized the effect of noise exposure on regulation of NTPDase1 and NTPDase2 expression in the cochlea using a combination of real-time RT-PCR, immunohistochemistry and functional studies. Adult Wistar rats were exposed to broad band noise at 90 dB and 110 dB sound pressure level (SPL) for 72 h. Exposure to 90 dB SPL induced a small and temporary change of auditory thresholds (temporary threshold shift), while exposure to 110 dB SPL induced a robust and permanent change of auditory thresholds (permanent threshold shift). NTPDase1 and NTPDase2 mRNA transcripts were upregulated in the cochlea exposed to 110 dB SPL, while mild noise (90 dB SPL) altered only NTPDase1 mRNA expression levels. Changes in NTPDases expression did not correlate with levels of circulating corticosterone, implying that the up-regulation of NTPDases expression was not stress-related. Semi-quantitative immunohistochemistry in the cochlea exposed to 110 dB SPL localized the increased NTPDase1 and NTPDase2 immunostaining in the stria vascularis and up-regulation of NTPDase2 in the intraganglionic spiral bundle. In contrast, NTPDase1 was down-regulated in the cell bodies of the spiral ganglion neurones. Distribution of NTPDases was not altered in the cochlea exposed to 90 dB SPL. Functional studies revealed increased ectonucleotidase activities in the cochlea after exposure to 110 dB SPL, consistent with up-regulation of NTPDases. The changes in NTPDases expression may reflect adaptive response of cochlear tissues to limit ATP signaling during noise exposure.
Collapse
Affiliation(s)
- S M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, Children's Hospital and the University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
20
|
Burrell HE, Bowler WB, Gallagher JA, Sharpe GR. Human keratinocytes express multiple P2Y-receptors: evidence for functional P2Y1, P2Y2, and P2Y4 receptors. J Invest Dermatol 2003; 120:440-7. [PMID: 12603858 DOI: 10.1046/j.1523-1747.2003.12050.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular nucleotides are agonists at the family of receptors known as the P2 receptors, and in keratinocytes the P2Y2 subtype is known to elevate the intracellular free calcium concentration (Cai) and stimulate proliferation. In this study, we have investigated the presence of other functional members of the P2Y subgroup in both normal human keratinocytes and the HaCaT cell line. Using reverse transcription polymerase chain reaction, the expression of mRNA for P2Y1, P2Y2, P2Y4, and P2Y6 receptors was demonstrated in HaCaT cells and differentiated and undifferentiated normal human keratinocytes. Cai was monitored in response to a panel of P2Y receptor agonists. To couple mobilized Cai to a downstream cellular response, cell proliferation was also addressed. In both cell types, adenosine 5'-triphosphate and uridine 5'-triphosphate induced Cai transients of approximately equal duration, magnitude, and shape, confirming the presence of functional P2Y2 receptors. In HaCaT cells, additional characteristic responses were observed in a subpopulation of cells; adenosine 5'-triphosphate failed to elevate Cai in some cells responding to uridine 5'-triphosphate, indicating the presence of P2Y4 receptors, whereas the P2Y1-specific agonist 2-methylthio-5'-adenosine diphosphate was, again, only effective in a small subpopulation. Uridine 5'-diphosphate was ineffective, indicating the absence of functional P2Y6 receptors. Adenosine 5'-triphosphate and uridine 5'-triphosphate equally promoted cell growth in normal human keratinocytes in comparison with the control. In HaCaT cells, adenosine 5'-triphosphate, uridine 5'-triphosphate, and adenosine 5'-diphosphate significantly increased proliferation in comparison to the controls, with a 30% higher response to uridine 5'-triphosphate than with adenosine 5'-triphosphate. These data demonstrate that multiple P2Y receptors (P2Y1, P2Y2, and P2Y4 subtypes) are differentially involved in the regulation of proliferation in human keratinocytes and therefore may be important in wound healing.
Collapse
Affiliation(s)
- Helen E Burrell
- Dermatology Unit, Department of Medicine, University of Liverpool, U.K.
| | | | | | | |
Collapse
|
21
|
Burnstock G. Introduction: ATP and Its Metabolites as Potent Extracellular Agents. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
22
|
Vlajkovic SM, Thorne PR, Sévigny J, Robson SC, Housley GD. NTPDase1 and NTPDase2 immunolocalization in mouse cochlea: implications for regulation of p2 receptor signaling. J Histochem Cytochem 2002; 50:1435-42. [PMID: 12417608 DOI: 10.1177/002215540205001102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cellular, molecular, and physiological studies have demonstrated an important signaling role for ATP and related nucleotides acting via P2 receptors in the cochlea of the inner ear. Signal modulation is facilitated by ectonucleotidases, a heterologous family of surface-located enzymes involved in extracellular nucleotide hydrolysis. Our previous studies have implicated CD39/NTPDase1 and CD39L1/NTPDase2, members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, as major ATP-hydrolyzing enzymes in the tissues lining the cochlear endolymphatic and perilymphatic compartments. NTPDase1 hydrolyzes both nucleoside triphosphates and diphosphates. In contrast, NTPDase2 is a preferential nucleoside triphosphatase. This study characterizes expression of these E-NTPDases in the mouse cochlea by immunohistochemistry. NTPDase1 can be immunolocalized to the cochlear vasculature and neural tissues (primary auditory neurons in the spiral ganglion). In contrast, NTPDase2 immunolabeling was principally localized to synaptic regions of the sensory inner and outer hair cells, stereocilia and cuticular plates of the outer hair cells, supporting cells of the organ of Corti (Deiters' cells and inner border cells), efferent nerve fibers located in the intraganglionic spiral bundle, and in the outer sulcus and root region of the spiral ligament. This differential expression of NTPDase1 and 2 in the cochlea suggests spatial regulation of P2 receptor signaling, potentially involving different nucleotide species and hydrolysis kinetics.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Discipline of Audiology and Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
23
|
Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002; 45:4057-93. [PMID: 12213051 DOI: 10.1021/jm020046y] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Vlajkovic SM, Thorne PR, Sévigny J, Robson SC, Housley GD. Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Hear Res 2002; 170:127-38. [PMID: 12208547 DOI: 10.1016/s0378-5955(02)00460-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extracellular ATP and other extracellular nucleotides acting via P2 receptors in the inner ear initiate a wide variety of signalling pathways important for regulation of hearing and balance. Ectonucleotidases are extracellular nucleotide-metabolising enzymes that modulate purinergic signalling in most tissues. Major ectonucleotidases in the cochlea are likely members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family. In this study, we provide a detailed description of NTPDase1 and NTPDase2 distribution in cochlear tissues using immunocytochemistry. E-NTPDase immunoreactivity was not equally distributed in the tissues bordering scala media. It was observed in the organ of Corti, including sensory and supporting cells, but was notably absent from Reissner's membrane and most of the marginal cells of the stria vascularis. NTPDase1 expression was most prominent in the cochlear vasculature and cell bodies of the spiral ganglion neurones, whereas considerable NTPDase2 immunoreactivity was detected in the stria vascularis. Both E-NTPDases were expressed in the cuticular plates of the sensory hair cells and nerve fibres projecting from the synaptic area underneath the inner and outer hair cells. E-NTPDase localisation corresponds to the reported distribution of some P2X receptor subunits (P2X(2) in particular) in sensory, supporting and neural cells and also P2Y receptor distribution in the vasculature and secretory tissues of the lateral wall. The role for E-NTPDases in purinergic signalling is most likely to regulate extracellular nucleoside triphosphate and diphosphate levels and thus provide termination for extracellular ATP signalling that has been linked to control of cochlear blood flow, electrochemical regulation of sound transduction and to neurotransmission in the cochlea.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Division of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
25
|
Honore P, Mikusa J, Bianchi B, McDonald H, Cartmell J, Faltynek C, Jarvis MF. TNP-ATP, a potent P2X3 receptor antagonist, blocks acetic acid-induced abdominal constriction in mice: comparison with reference analgesics. Pain 2002; 96:99-105. [PMID: 11932066 DOI: 10.1016/s0304-3959(01)00434-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exogenous ATP has been shown to be algogenic in both animal and humans. Research has focused on the P2X3 ligand-gated ion channel, as it is preferentially expressed on nociceptive C-fibers. In addition, P2X3 receptor gene disrupted mice show decreased responses to somatic painful stimuli. However, the potential role of P2X receptor activation in visceral pain has not yet been evaluated. In the present study, the systemic administration of suramin, and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, PPADS, both non-selective P2X receptor antagonists, dose-dependently reduced acetic acid-induced abdominal constrictions in mice (ED(50)=34.5 micromol/kg and ED50=70 micromol/kg, respectively). Furthermore, 2'-(or-3')-O-(trinitrophenyl)adenosine 5'- tri-phosphate (TNP-ATP) potently (IC50=10 nM) blocked the functional activation of P2X3 receptors in vitro and attenuated acetic acid-induced visceral pain. In the abdominal constriction assay, TNP-ATP (ED(50)=6.35 micromol/kg, i.p.) was 6-10 fold more potent than suramin and PPADS to reduce nociceptive behavior. In addition, TNP-ATP was 10 fold more potent than TNP-AMP (2'-(or-3')-O-(trinitrophenyl)adenosine 5'-mono-phosphate) (ED50=63.5 micromol/kg, i.p.) at reducing acetic acid-induced nociception. At the highest dose, TNP-ATP completely abolished nociceptive behavior, as did morphine (ED50=3 micromol/kg, i.p.). While TNP-ATP is also a potent antagonist of P2X1 receptors, P2X1 receptor mediated responses have not been shown in dorsal root ganglia and diinosine pentaphosphate, IP5I, a potent and selective P2X1 receptor antagonist, was ineffective at reducing abdominal constrictions. Thus, the antinociceptive effects of TNP-ATP appear to be mediated through activation of homomeric P2X3and/or heteromeric P2X2/3 receptors. Together, these results show that activation of P2X3 containing receptors plays a role in the transmission of inflammatory visceral pain.
Collapse
Affiliation(s)
- Prisca Honore
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
Receptor subtypes for purines have been identified in a variety of tissues, increasing interest in the roles of purine-mediated signalling in pathophysiological processes. Growing evidence supports the involvement of one of the purinoceptor subtypes, P2X3, in nociception. In this article, recent studies of purine-mediated nociception and visceral pain will be discussed. Furthermore, a novel hypothesis is proposed for purine-mediated mechanosensory transduction where ATP released during distension from epithelial cells lining tubes (such as ureter and gut) and sacs (such as the bladder) acts on P2X3 receptors on a subepithelial nerve plexus to initiate impulses that are relayed via the spinal cord to pain centres in the brain.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, Rowland Hill Street, NW3 2PF, London, UK.
| |
Collapse
|