1
|
Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s disease: a QSAR approach. Struct Chem 2020. [DOI: 10.1007/s11224-020-01560-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Byeon JJ, Park MH, Shin SH, Park Y, Lee BI, Choi JM, Kim N, Park SJ, Park MJ, Lim JH, Na YG, Shin YG. In Vitro, In Silico, and In Vivo Assessments of Pharmacokinetic Properties of ZM241385. Molecules 2020; 25:molecules25051106. [PMID: 32131453 PMCID: PMC7179144 DOI: 10.3390/molecules25051106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases. Adenosine regulates the response to other neurotransmitters in the brain regions related to motor function. In the several subtypes of adenosine receptors, especially, adenosine 2A receptors (A2ARs) are involved in neurodegenerative conditions. ZM241385 is one of the selective non-xanthine A2AR antagonists with high affinity in the nanomolar range. This study describes the in vitro and in vivo pharmacokinetic properties of ZM241385 in rats. A liquid chromatography-quadrupole time-of-flight mass spectrometric (LC-qToF MS) method was developed for the determination of ZM241385 in rat plasma. In vivo IV administration studies showed that ZM241385 was rapidly eliminated in rats. However, the result of in vitro metabolic stability studies showed that ZM241385 had moderate clearance, suggesting that there is an extra clearance pathway in addition to hepatic clearance. In addition, in vivo PO administration studies demonstrated that ZM241385 had low exposure in rats. The results of semi-mass balance studies and the in silico PBPK modeling studies suggested that the low bioavailability of ZM241385 after oral administration in rats was due to the metabolism and by liver, kidney, and gut.
Collapse
|
3
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Pace S, Brogin G, Stasi MA, Riccioni T, Borsini F, Capocasa F, Manera F, Tallarico C, Grossi P, Vacondio F, Bassi M, Bartoccini F, Lucarini S, Piersanti G, Tarzia G, Cabri W, Minetti P. Potent, Metabolically Stable 2-Alkyl-8-(2H-1,2,3-triazol-2-yl)-9H-adenines as Adenosine A2AReceptor Ligands. ChemMedChem 2015; 10:1149-52. [DOI: 10.1002/cmdc.201500113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 11/06/2022]
|
5
|
Abstract
Protection against neuronal damage is a major objective of current research in areas such as stroke medicine, Alzheimer's disease and other neurodegenerative conditions. Adenosine receptors are important modulators of cell survival, and thus agents targeting these receptors could be valuable therapeutic agents. Agonists at A(1) receptors and antagonists at A(2A) receptors are known to protect acutely against neuronal damage caused by toxins or ischemia-reperfusion, and these compounds can also protect against the cell damage inflicted by reactive oxygen species. Even endogenous adenosine may be neuroprotective, since its levels rise substantially in association with a period of ischemia-reperfusion. Unfortunately, there is growing evidence that the efficacy of adenosine receptor activation can be reduced by the concomitant activation of glutamate receptors responding to N-methyl-D-aspartate (NMDA), probably acting via the release of nitric oxide. Such problems will need to be resolved before adenosine receptor agonists can proceed far as neuroprotective agents. The use of receptor antagonists may prove a more valuable approach.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
6
|
Shook BC, Rassnick S, Wallace N, Crooke J, Ault M, Chakravarty D, Barbay JK, Wang A, Powell MT, Leonard K, Alford V, Scannevin RH, Carroll K, Lampron L, Westover L, Lim HK, Russell R, Branum S, Wells KM, Damon S, Youells S, Li X, Beauchamp DA, Rhodes K, Jackson PF. Design and characterization of optimized adenosine A₂A/A₁ receptor antagonists for the treatment of Parkinson's disease. J Med Chem 2012; 55:1402-17. [PMID: 22239465 DOI: 10.1021/jm201640m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and characterization of two, dual adenosine A(2A)/A(1) receptor antagonists in several animal models of Parkinson's disease is described. Compound 1 was previously reported as a potential treatment for Parkinson's disease. Further characterization of 1 revealed that it was metabolized to reactive intermediates that caused the genotoxicity of 1 in the Ames and mouse lymphoma L51784 assays. The identification of the metabolites enabled the preparation of two optimized compounds 13 and 14 that were devoid of the metabolic liabilities associated with 1. Compounds 13 and 14 are potent dual A(2A)/A(1) receptor antagonists that have excellent activity, after oral administration, across a number of animal models of Parkinson's disease including mouse and rat models of haloperidol-induced catalepsy, mouse and rat models of reserpine-induced akinesia, and the rat 6-hydroxydopamine (6-OHDA) lesion model of drug-induced rotation.
Collapse
Affiliation(s)
- Brian C Shook
- Janssen Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shook BC, Jackson PF. Adenosine A(2A) Receptor Antagonists and Parkinson's Disease. ACS Chem Neurosci 2011; 2:555-67. [PMID: 22860156 DOI: 10.1021/cn2000537] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022] Open
Abstract
This Review summarizes and updates the work on adenosine A(2A) receptor antagonists for Parkinson's disease from 2006 to the present. There have been numerous publications, patent applications, and press releases within this time frame that highlight new medicinal chemistry approaches to this attractive and promising target to treat Parkinson's disease. The Review is broken down by scaffold type and will discuss the efforts to optimize particular scaffolds for activity, pharmacokinetics, and other drug discovery parameters. The majority of approaches focus on preparing selective A(2A) antagonists, but a few approaches to dual A(2A)/A(1) antagonists will also be highlighted. The in vivo profiles of compounds will be highlighted and discussed to compare activities across different chemical series. A clinical report and update will be given on compounds that have entered clinical trials.
Collapse
Affiliation(s)
- Brian C. Shook
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Paul F. Jackson
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
8
|
Shook BC, Rassnick S, Osborne MC, Davis S, Westover L, Boulet J, Hall D, Rupert KC, Heintzelman GR, Hansen K, Chakravarty D, Bullington JL, Russell R, Branum S, Wells KM, Damon S, Youells S, Li X, Beauchamp DA, Palmer D, Reyes M, Demarest K, Tang Y, Rhodes K, Jackson PF. In Vivo Characterization of a Dual Adenosine A2A/A1 Receptor Antagonist in Animal Models of Parkinson’s Disease. J Med Chem 2010; 53:8104-15. [DOI: 10.1021/jm100971t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian C. Shook
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Stefanie Rassnick
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Melville C. Osborne
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Scott Davis
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Lori Westover
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Jamie Boulet
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Daniel Hall
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Kenneth C. Rupert
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Geoffrey R. Heintzelman
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Kristin Hansen
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Devraj Chakravarty
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - James L. Bullington
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Ronald Russell
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Shawn Branum
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Kenneth M. Wells
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Sandra Damon
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Scott Youells
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Xun Li
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Derek A. Beauchamp
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - David Palmer
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Mayra Reyes
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Keith Demarest
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Yuting Tang
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Kenneth Rhodes
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Paul F. Jackson
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
9
|
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009:535-87. [PMID: 19639293 DOI: 10.1007/978-3-540-89615-9_17] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
10
|
Stone TW, Forrest CM, Mackay GM, Stoy N, Darlington LG. Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis 2007; 22:337-52. [PMID: 17712616 DOI: 10.1007/s11011-007-9064-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review summarises the potential contributions of two groups of compounds to cerebral dysfunction and damage in metabolic disease. The kynurenines are oxidised metabolites of tryptophan, the kynurenine pathway being the major route for tryptophan catabolism in most tissues. The pathway includes quinolinic acid -- an agonist at N-methyl-D-aspartate (NMDA) receptors, kynurenic acid -- an antagonist at glutamate and nicotinic receptors, and other redox active compounds that are able to generate free radicals under many physiological and pathological conditions. The pathway is activated in immune-competent cells, including glia in the central nervous system, and may contribute substantially to delayed neuronal damage following an infarct or metabolic insult. Adenosine is an ubiquitous purine that can protect neurons by suppressing excitatory neurotransmitter release, reducing calcium fluxes and inhibiting NMDA receptors. The extent of brain injury is critically dependent on the balance between the two opposing forces of kynurenines and purines.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, Scotland, UK.
| | | | | | | | | |
Collapse
|
11
|
Tang Y, Demarest KT. Distinctive and synergistic signaling of human adenosine A2a and dopamine D2L receptors in CHO cells. J Recept Signal Transduct Res 2005; 25:159-79. [PMID: 16194932 DOI: 10.1080/10799890500210487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adenosine A(2a) receptor (A(2a)R) colocalizes with dopamine D(2) receptor (D(2)R) in the basal ganglia and modulates D(2)R-mediated dopaminergic activities. A(2a)R and D(2)R couple to stimulatory and inhibitory G proteins, respectively. Their opposing roles in regulating neuronal activities, such as locomotion and alcohol consumption, are mediated by their opposite actions on adenylate cyclase, which often serves as "co-incidence detector" of various activators. On the other hand, the neural actions of A(2a)R and D(2)R are also, at least partially, independent of each other, as indicated by studies using D(2)R and A(2a)R knock-out mice. Here we co-expressed human A(2a)R and human D(2L)R in CHO cells and examined their signaling characteristics. Human A(2a)R desensitized rapidly upon agonist stimulation. A(2a)R activity (80%) was diminished after 2 hr of pretreatment with its agonist CGS21680. In contrast, human D(2L)R activity was sustained even after 2 hr and 18 hr pretreatment with its agonist quinpirole. Long-term (18 hr) stimulation of human D(2L)R also increased basal cAMP levels in CHO cells, whereas long-term (18 hr) activation of human A(2a)R did not affect basal cAMP levels. Furthermore, long-term (18 hr) activation of D(2L)R dramatically sensitized A(2a)R-induced stimulation of adenylate cyclase in a pertussis toxin-sensitive way. Forskolin-induced cAMP accumulation was significantly increased after short-term (2 hr) human D(2L)R stimulation and further elevated after long-term (18 hr) D(2L)R activation. However, neither short-term (2 hr) nor long-term (18 hr) stimulation of A(2a)R affected the inhibitory effects of D(2L)R on adenylate cyclase. Co-stimulation of A(2a)R and D(2L)R could not induce desensitization or sensitization of D(2L)R either. In summary, signaling through A(2a)R and D(2L)R is distinctive and synergistic, supporting their unique and yet integrative roles in regulating neuronal functions when both receptors are present.
Collapse
Affiliation(s)
- Yuting Tang
- Endocrine Therapeutics and Metabolic Disorders, The Johnson and Johnson Pharmaceutical Research and Development, Raritan, NJ 08869, USA.
| | | |
Collapse
|
12
|
Abstract
The activation of adenosine A1, A2 andA3 receptors can protect neurones against damage generated by mechanical or hypoxic/ischaemic insults as well as excitotoxins. A1 receptors are probably effective by suppressing transmitter release and producing neuronal hyperpolarisation. They are less likely to be of therapeutic importance due to the plethora of side effects resulting from A1 agonism, although the existence of receptor subtypes and recent synthetic chemistry efforts to increase ligand selectivity, may yet yield clinically viable compounds. Activation of A2A receptors can protect neurons, although there is much uncertainty as to whether agonists are acting centrally or via a peripheral mechanism such as altering blood flow or immune cell function. Selective antagonists at the A2A receptor, such as 4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-yl-amino]ethyl)phenol (ZM 241385) and 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), can also protect against neuronal death produced by ischaemia or excitotoxicity. In addition, A2A receptor antagonists can reduce damage produced by combinations of subthreshold doses of the endogenous excitotoxin quinolinic acid and free radicals. Since the A2A receptors do not seem to be activated by normal endogenous levels of adenosine, their blockade should not generate significant side effects, so that A2A receptor antagonists appear to be promising candidates as new drugs for the prevention of neuronal damage. Adenosine A3 receptors have received less attention to date, but agonists are clearly able to afford protection against damage when administered chronically. Given the disappointing lack of success of NMDA receptor antagonists in human stroke patients, despite their early promise in animal models, it is possible that A2A receptor antagonists could have a far greater clinical utility.
Collapse
Affiliation(s)
- Trevor W Stone
- Division of Neuroscienec and Biomedical Systems, West Medical Bldg, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
|