1
|
Sharma B, Hussain T, Khan MA, Jaiswal V. Exploring AT2R and its polymorphism in different diseases: An approach to develop AT2R as a drug target beyond hypertension. Curr Drug Targets 2021; 23:99-113. [PMID: 34365920 DOI: 10.2174/1389450122666210806125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
The Angiotensin II type 2 receptor (AT2R) is one of the critical components of the renin-angiotensin system (RAS), which performs diverse functions like inhibiting cell differentiation, cell proliferation, vasodilatation, reduces oxidative stress and inflammation. AT2R is relatively less studied in comparison to other components of RAS despite its uniqueness (sex-linked) and diverse functions. The AT2R is differentially expressed in different tissues, and its gene polymorphisms are associated with several diseases. The molecular mechanism behind the association of AT2R and its gene polymorphisms with the diseases remains to be fully understood, which hinders the development of AT2R as a drug target. Single nucleotide polymorphisms (SNPs) in AT2R are found at different locations (exons, introns, promoter, and UTR regions) and were studied for association with different diseases. There may be different mechanisms behind these associations as some AT2R SNP variants were associated with differential expression, the SNPs (A1675G/A1332G) affect the alternate splicing of AT2R mRNA, A1332G genotype results in shortening of the AT2R mRNA and subsequently defective protein. Few SNPs were found to be associated with the diseases in either females (C4599A) or males (T1334C). Several other SNPs were expected to be associated with other similar/related diseases, but studies have not been done yet. The present review emphasizes on the significance of AT2R and its polymorphisms associated with the diseases to explore the precise role of AT2R in different diseases and the possibility to develop AT2R as a potential drug target.
Collapse
Affiliation(s)
- Bhanu Sharma
- Faculty of Applied Sciences and Biotechnology Shoolini University of Biotechnology and Management Sciences, Post Box No. 9, Head post Office, Solan, Himachal Pradesh. India
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas. United States
| | - Mohammed Azhar Khan
- Faculty of Applied Sciences and Biotechnology Shoolini University of Biotechnology and Management Sciences, Post Box No. 9, Head post Office, Solan, Himachal Pradesh. India
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120. South Korea
| |
Collapse
|
2
|
Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett 2018; 700:30-37. [PMID: 29684528 DOI: 10.1016/j.neulet.2018.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) can form homo- and heterodimers or constitute higher oligomeric clusters with other heptahelical GPCRs. In this article, multiscale molecular modeling approaches as well as experimental techniques which are used to study oligomerization of GPCRs are reviewed. In particular, the effect of dimerization/oligomerization to the ligand binding affinity of individual protomers and also on the efficacy of the oligomer are discussed by including diverse examples from the literature. In addition, possible allosteric effects that may emerge upon interaction of GPCRs with membrane components, like cholesterol, is also discussed. Investigation of these above-mentioned interactions may greatly contribute to the candidate molecule screening studies and development of novel therapeutics with fewer adverse effects.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
3
|
Abstract
Depression remains a debilitating condition with an uncertain aetiology. Recently, attention has been given to the renin-angiotensin system. In the central nervous system, angiotensin II may be important in multiple pathways related to neurodevelopment and regulation of the stress response. Studies of drugs targeting the renin-angiotensin system have yielded promising results. Here, we review the potential beneficial effects of angiotensin blockers in depression and their mechanisms of action. Drugs blocking the angiotensin system have efficacy in several animal models of depression. While no randomised clinical trials were found, case reports and observational studies showed that angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had positive effects on depression, whereas other antihypertensive agents did not. Drugs targeting the renin-angiotensin system act on inflammatory pathways implicated in depression. Both preclinical and clinical data suggest that these drugs possess antidepressant properties. In light of these results, angiotensin system-blocking agents offer new horizons in mood disorder treatment.
Collapse
|
4
|
Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, Rossi F, Rosano G, Capuano A. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2016; 227:734-742. [PMID: 27823897 DOI: 10.1016/j.ijcard.2016.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS.
Collapse
Affiliation(s)
- A Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy.
| | - M Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Vitale
- IRCCS San Raffaele Pisana, Rome, Italy
| | - L Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - G Rosano
- IRCCS San Raffaele Pisana, Rome, Italy; Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - A Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| |
Collapse
|
5
|
Erhardt A, Lucae S, Kern N, Unschuld PG, Ising M, Lieb R, Uhr M, Hohoff C, Deckert J, Bandelow B, Maier W, Binder EB, Müller-Myhsok B, Keck ME, Holsboer F. Association of polymorphisms in the angiotensin-converting enzyme gene with syndromal panic attacks. Mol Psychiatry 2008; 13:242-3. [PMID: 18285758 DOI: 10.1038/sj.mp.4002094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|