1
|
Boccella S, De Filippis L, Giorgio C, Brandolini L, Jones M, Novelli R, Amorizzo E, Leoni MLG, Terranova G, Maione S, Luongo L, Leone M, Allegretti M, Minnella EM, Aramini A. Combination Drug Therapy for the Management of Chronic Neuropathic Pain. Biomolecules 2023; 13:1802. [PMID: 38136672 PMCID: PMC10741625 DOI: 10.3390/biom13121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic neuropathic pain (NP) is an increasingly prevalent disease and leading cause of disability which is challenging to treat. Several distinct classes of drugs are currently used for the treatment of chronic NP, but each drug targets only narrow components of the underlying pathophysiological mechanisms, bears limited efficacy, and comes with dose-limiting side effects. Multimodal therapies have been increasingly proposed as potential therapeutic approaches to target the multiple mechanisms underlying nociceptive transmission and modulation. However, while preclinical studies with combination therapies showed promise to improve efficacy over monotherapy, clinical trial data on their efficacy in specific populations are lacking and increased risk for adverse effects should be carefully considered. Drug-drug co-crystallization has emerged as an innovative pharmacological approach which can combine two or more different active pharmaceutical ingredients in a single crystal, optimizing pharmacokinetic and physicochemical characteristics of the native molecules, thus potentially capitalizing on the synergistic efficacy between classes of drugs while simplifying adherence and minimizing the risk of side effects by reducing the doses. In this work, we review the current pharmacological options for the treatment of chronic NP, focusing on combination therapies and their ongoing developing programs and highlighting the potential of co-crystals as novel approaches to chronic NP management.
Collapse
Affiliation(s)
- Serena Boccella
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy; (S.B.); (C.G.)
| | - Lidia De Filippis
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Cristina Giorgio
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy; (S.B.); (C.G.)
| | - Laura Brandolini
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Meghan Jones
- Research & Early Development (R&D), Dompé US, 181 2nd Avenue, STE 600, San Mateo, CA 94401, USA;
| | - Rubina Novelli
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Ezio Amorizzo
- Pain Unit, San Paolo Hospital, 00053 Civitavecchia, Italy;
- Pain Clinic Roma, 00191 Rome, Italy
| | - Matteo Luigi Giuseppe Leoni
- Azienda USL di Piacenza, 29121 Piacenza, Italy;
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, 00185 Rome, Italy
| | | | - Sabatino Maione
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (L.L.)
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (L.L.)
| | - Manuela Leone
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Marcello Allegretti
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Enrico Maria Minnella
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Andrea Aramini
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| |
Collapse
|
2
|
Ma Y, Liu W, Liang L, Ye J, Huang C, Zhuang T, Zhang G. Synergistic Antinociceptive Effects of Indomethacin-Pregabalin and Meloxicam-Pregabalin in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2022; 10:biomedicines10061413. [PMID: 35740434 PMCID: PMC9219661 DOI: 10.3390/biomedicines10061413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is often closely associated with nerve injury or inflammation, and the role of traditional nonsteroidal anti-inflammatory drugs as adjuvants for treating chemotherapy-induced peripheral neuropathic pain remains unclear. In this study, the potential synergistic antinociceptive effects of indomethacin–pregabalin and meloxicam–pregabalin were evaluated in paclitaxel-induced neuropathic pain and carrageenan-induced inflammatory pain in rodents. Although indomethacin and meloxicam alone only slightly relieved mechanical allodynia in the above two models, isobolographic analysis showed that the combination of indomethacin or meloxicam with pregabalin produced significant synergistic antinociceptive effects for paclitaxel-induced neuropathic pain (IN-PGB, experimental ED25 = [4.41 (3.13–5.82)] mg/kg, theoretical ED25 = [8.50 (6.62–10.32)] mg/kg; MEL-PGB, experimental ED25 = [3.96 (2.62–5.46)] mg/kg, theoretical ED25 = [7.52 (5.73–9.39)] mg/kg). In addition, MEL-PGB dosed via intraplantar injection into the left paw, intragastric injection, or intraperitoneal injection reversed paclitaxel-induced allodynia, indicating that they may act at multiple sites in the neuroaxis and periphery. However, indomethacin–pregabalin and meloxicam–pregabalin exerted antagonistic antiallodynic interactions in carrageenan-induced inflammatory pain in rats. Taken together, coadministration of indomethacin or meloxicam with pregabalin may possess potential therapeutic advantages for treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Yurong Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenwen Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lingzhi Liang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Jiaqi Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Chaonan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-87792235 (G.Z.)
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-87792235 (G.Z.)
| |
Collapse
|
3
|
Espinosa-Juárez JV, Jaramillo-Morales OA, Déciga-Campos M, Moreno-Rocha LA, López-Muñoz FJ. Sigma-1 receptor antagonist (BD-1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury. Drug Dev Res 2021; 82:267-277. [PMID: 33051885 DOI: 10.1002/ddr.21750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is characterized by the presence of hyperalgesia and allodynia. Pharmacological treatments include the use of antiepileptics such as pregabalin or gabapentin, as well as antidepressants; however, given the role of the sigma-1 receptor in the generation and maintenance of pain, it has been suggested that sigma-1 receptor antagonists may be effective. There are also other alternatives that have been explored, such as the use of flavonoids such as quercetin. Due to the relevance of drug combinations in therapeutics, the objective of this work was to evaluate the effect of the combination of BD-1063 with quercetin in a chronic sciatic nerve constriction model using the "Surface of Synergistic Interaction" analysis method. The combination had preferable additive or synergistic effects, with BD-1063 (17.8 mg/kg) + QUER (5.6 mg/kg) showing the best antinociceptive effects. The required doses were also lower than those used individually to obtain the same level of effect. Our results provide the first evidence that the combination of a sigma-1 receptor antagonist and the flavonoid quercetin may be useful in the treatment of nociceptive behaviors associated with neuropathic pain, suggesting a new therapeutic alternative for this type of pain.
Collapse
Affiliation(s)
- Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa, Chiapas, Mexico
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Irapuato-Silao km. 9, El copal, complejo 2 de la DICIVA, Irapuato, Guanajuato, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Luis Alfonso Moreno-Rocha
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City, Mexico
| | | |
Collapse
|
4
|
Déciga-Campos M, Villafán-Gutiérrez R, Espinosa-Juárez JV, Jaramillo-Morales OA, López-Muñoz FJ. Synergistic interaction between haloperidol and gabapentin in a model of neuropathic nociception in rat. Eur J Pharmacol 2021; 891:173702. [PMID: 33152334 DOI: 10.1016/j.ejphar.2020.173702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Preclinical studies have reported that sigma-1 receptor antagonists may have efficacy in neuropathic pain states. The sigma-1 receptor is a unique ligand-operated chaperone present in crucial areas for pain control, in both the peripheral and central nervous system. This study assesses the synergistic antihyperalgesic and antiallodynic effect of haloperidol, a sigma-1 antagonist, combined with gabapentin in rats with peripheral neuropathy. Wistar rats male were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of systemic administration of gabapentin and the sigma-1 receptor antagonist, haloperidol, were examined at 11 days post-CCI surgery. An analysis of Surface of Synergistic Interaction was used to determine whether the combination's effects were synergistic. Twelve combinations showed various degrees of interaction in the antihyperalgesic and antiallodynic effects. In hyperalgesia, three combinations showed additive effects, four combinations showed supra-additive effects, and three combinations produced an effect limited by the maximum effect. In allodynia, five combinations showed additive effects, two combinations showed supra-additive effects, and five combinations produced antihyperalgesic effects limited by the maximum effect. These findings indicate that the administration of some specific combination of gabapentin and haloperidol can synergistically reduce nerve injury-induced allodynia and hyperalgesia. This suggests that the haloperidol-gabapentin combination can improve the antiallodynic and antihyperalgesic effects in a neuropathic pain model.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomás, 11340, Ciudad de México, Mexico.
| | - Rodrigo Villafán-Gutiérrez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomás, 11340, Ciudad de México, Mexico
| | - Josué Vidal Espinosa-Juárez
- Escuela de Cs. Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa, Chiapas, C.P, 29140, Mexico.
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato-Silao km. 9, El copal, complejo 2 de la DICIVA, C.P, 36500, Irapuato, Guanajuato, Mexico.
| | - Francisco Javier López-Muñoz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Lin WY, Cheng YT, Huang YH, Lin FS, Sun WZ, Yen CT. Synergistic symptom-specific effects of ketorolac-tramadol and ketorolac-pregabalin in a rat model of peripheral neuropathy. J Chin Med Assoc 2019; 82:457-463. [PMID: 31180945 DOI: 10.1097/jcma.0000000000000115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Although current neuropathic pain treatment guidelines do not recommend the use of nonsteroidal anti-inflammatory drugs (NSAIDs), whether NSAIDs can serve as a useful adjuvant to conventional multimodal therapy remains unclear. METHODS The spared nerve injury (SNI) rats rapidly developed profound and long-lasting spontaneous and evoked pain behaviors, including mechanical and cold allodynia of the ipsilateral hind paw. At day 5, we first characterized the nociceptive responses to ketorolac, tramadol, pregabalin, and their combinations. RESULTS We found that tramadol and pregabalin exerted dose-dependent analgesic effects on both spontaneous and evoked behaviors. However, ketorolac alone did not suppress any behaviors regardless of the dose. Ketorolac-tramadol and ketorolac-pregabalin produced variable degrees of additive suppression of spontaneous and evoked behavioral responses. Cold allodynia was profoundly diminished after ketorolac was added to ineffective pregabalin or tramadol. Mechanical allodynia was markedly attenuated by ketorolac-pregabalin but less so by ketorolac-tramadol mixtures. CONCLUSION Our data demonstrated that an NSAID alone failed to relieve spontaneous or evoked pain behaviors in the rat SNI model, but when combined with a weak opioid and α-2-δ-ligand produced a profound synergistic analgesic effect on cold allodynia and discrepant efficacy for mechanical allodynia and spontaneous pain.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yu-Ting Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Hsin Huang
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Feng-Sheng Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Combining opioids and non-opioids for pain management: Current status. Neuropharmacology 2019; 158:107619. [PMID: 31029588 DOI: 10.1016/j.neuropharm.2019.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
Pain remains a global health challenge. For decades, clinicians have been primarily relying on μ-opioid receptor (MOR) agonists and nonsteroidal anti-inflammatory drugs (NSAIDs) for pain management. MOR agonists remain the most efficacious analgesics available; however, adverse effects related to MOR agonists use are severe which often lead to forced drug discontinuation and inadequate pain relief. The recent opioid overdose epidemic urges the development of safer analgesics. Combination therapy is a well-established clinical pharmacotherapeutic strategy for the treatment of various clinical disorders. The combination of MOR agonists with non-MOR agonists may increase the analgesic potency of MOR agonists, reduce the development of tolerance and dependence, reduce the diversion and abuse, overdose, and reduce other clinically significant side effects associated with prolonged opioid use such as constipation. Overall, the combination therapy approach could substantially improve the therapeutic profile of MOR agonists. This review summarizes some recent developments in this field. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
|
7
|
THC and gabapentin interactions in a mouse neuropathic pain model. Neuropharmacology 2019; 144:115-121. [DOI: 10.1016/j.neuropharm.2018.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022]
|
8
|
Godínez-Chaparro B, Quiñonez-Bastidas GN, Rojas-Hernández IR, Austrich-Olivares AM, Mata-Bermudez A. Synergistic Interaction of a Gabapentin- Mangiferin Combination in Formalin-Induced Secondary Mechanical Allodynia and Hyperalgesia in Rats Is Mediated by Activation of NO-Cyclic GMP-ATP-Sensitive K + Channel Pathway. Drug Dev Res 2017; 78:390-402. [PMID: 28940250 DOI: 10.1002/ddr.21411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 11/07/2022]
Abstract
Preclinical Research Gabapentin is an anticonvulsant used to treat neuropathic pain. Mangiferin is an antioxidant that has antinociceptive and antiallodynic effects in inflammatory and neuropathic pain models. The purpose of this study was to determine the interaction between mangiferin and gabapentin in the development and maintenance of formalin-induced secondary allodynia and hyperalgesia in rats. Gabapentin, mangiferin, or their fixed-dose ratio combination were administrated peripherally. Isobolographic analyses was used to define the nature of the interaction of antiallodynic and/or antihyperalgesic effects of the two compounds. Theoretical ED50 values for the combination were 74.31 µg/paw and 95.20 µg/paw for pre- and post-treatment, respectively. These values were higher than the experimental ED50 values, 29.45 µg/paw and 37.73 µg/paw respectively, indicating a synergistic interaction in formalin-induced secondary allodynia and hyperalgesia. The antiallodynic and antihyperalgesic effect induced by the gabapentin/mangiferin combination was blocked by administration of L-NAME, the soluble guanylyl cyclase inhibitor, ODQ and glibenclamide. These data suggest that the gabapentin- mangiferin combination produces a synergistic interaction at the peripheral level. Moreover, the antiallodynic and hyperalgesic effect induced by the combination is mediated via the activation of an NO-cyclic GMP-ATP-sensitive K+ channel pathway. Drug Dev Res 78 : 390-402, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Mexico, D.F, 04960, Mexico
| | - Geovanna Nallely Quiñonez-Bastidas
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Mexico, D.F, 04960, Mexico
| | - Isabel Rocío Rojas-Hernández
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Mexico, D.F, 04960, Mexico
| | - Amaya Montserrat Austrich-Olivares
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Mexico, D.F, 04960, Mexico
| | - Alfonso Mata-Bermudez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Mexico, D.F, 04960, Mexico
| |
Collapse
|