1
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Qin Y, Qi L, Zhen X, Wang X, Chai H, Ma X, Jiang X, Cai X, Zhu W. Different Performances of BF 3, BCl 3, and BBr 3 in Hypervalent Iodine-Catalyzed Halogenations. J Org Chem 2023; 88:4359-4371. [PMID: 36939669 DOI: 10.1021/acs.joc.2c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Herein, hypervalent iodine-catalyzed halogenation of aryl-activated alkenes using BX3 (X = Cl, Br) as the halogen source and activating reagents was reported. Various halogenated 1,3-oxazine/2-oxazoline derivatives were obtained in good-to-high yields. Using BF3 resulted in different substitute sites from BBr3 and BCl3 of the products, indicating different reactive intermediates and reaction pathways. The reaction underwent a "ligand coupling/oxidative addition/intermolecular nucleophilic attack/1,2-aryl migration/reductive elimination/intramolecular nucleophilic attack" cascade when BF3 was applied as the halogen source, while 1,2-aryl migration has "disappeared" when the halogen source was BBr3 or BCl3. Possible catalytic cycles were proposed, and DFT calculations were conducted to demonstrate the differences among BX3 (X = F, Cl, Br) in the hypervalent iodine-catalyzed halogenations.
Collapse
Affiliation(s)
- Yuji Qin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Qi
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiang Zhen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hongli Chai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Al-Mustafa A, Al-Zereini W, Ashram M, Al-Sha’er MA. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Qi L, Qin Y, Wang X, Chai H, Zhu W, Zhou Y. Electrophilic Halogen Reagents-mediated Halogenation: Synthesis of Halogenated Dihydro-1,3-oxazine Derivatives. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Designing novel anticancer sulfonamide based 2,5-disubstituted-1,3,4-thiadiazole derivatives as potential carbonic anhydrase inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Saeed A, Channar PA, Arshad M, El‐Seedi HR, Abbas Q, Hassan M, Raza H, Seo S. Novel
N
‐(benzo[d]oxazol‐2‐yl)alkanamides; synthesis and carbonic anhydrase
II
inhibition studies. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aamer Saeed
- Department of ChemistryQuaid‐i‐Azam University Islamabad Pakistan
| | | | - Muhammad Arshad
- Chemistry Division Directorate of SciencePINSTECH Nilore Pakistan
| | - Hesham R. El‐Seedi
- Pharmacognosy Group, Department of Medicinal ChemistryBiomedical Center (BMC), Uppsala University Uppsala Sweden
| | - Qamar Abbas
- Department of PhysiologyUniversity of Sindh Jamshoro Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB)The University of Lahore Lahore Pakistan
| | - Hussain Raza
- College of Natural Sciences, Department of Biological SciencesKongju National University Gongju Republic of Korea
| | - Sung‐Yum Seo
- College of Natural Sciences, Department of Biological SciencesKongju National University Gongju Republic of Korea
| |
Collapse
|
7
|
Abas M, Rafique H, Shamas S, Roshan S, Ashraf Z, Iqbal Z, Raza H, Hassan M, Afzal K, Rizvanov AA, Asad MHHB. Sulfonamide-Based Azaheterocyclic Schiff Base Derivatives as Potential Carbonic Anhydrase Inhibitors: Synthesis, Cytotoxicity, and Enzyme Inhibitory Kinetics. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8104107. [PMID: 32149140 PMCID: PMC7054763 DOI: 10.1155/2020/8104107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
A series of sulfonamide-bearing azaheterocyclic Schiff base derivatives 3(a-j) were synthesized as carbonic anhydrase inhibitors. The substituted benzene sulfonyl chlorides 1(a-d) were reacted with N2H4 to get aromatic sulfonyl hydrazides 2(a-d). The intermediate hydrazides 2(a-d) were treated with substituted aldehydes to afford azaheterocyclic sulfonamide Schiff bases 3(a-j). The spectral data of synthesized compounds confirmed the formation of the final products. The inhibitory effects of 3(a-j) on carbonic anhydrase activity were determined, and it was found that derivative 3c exhibited the most potent activity with IC500.84 ± 0.12 μM among all other derivatives and is also more active than standard acetazolamide (IC500.91 ± 0.12). The enzyme inhibitory kinetics results determined by Lineweaver-Burk plots revealed that compound 3c inhibits the enzyme by noncompetitive mode of inhibition with K i value 8.6 μM. The molecular docking investigations of the synthesized analogues 3(a-j) were evaluated which assured that synthesized compounds bind well inside the active binding site of the target enzyme. Cytotoxicity on human keratinocyte (HaCaT) and MCF-7 cell lines was performed, and it was found that most of the synthesized analogues were nontoxic on these cell lines and the toxic effects follow the dose-dependent manner. Based on our investigations, it was suggested that analogue 3c may serve as core structure to project carbonic anhydrase inhibitors with greater potency.
Collapse
Affiliation(s)
- Mujahid Abas
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Hummera Rafique
- Department of Chemistry, University of Gujrat, Gujrat-50700, Pakistan
| | - Shazia Shamas
- Department of Zoology, University of Gujrat, Gujrat-50700, Pakistan
| | - Sadia Roshan
- Department of Zoology, University of Gujrat, Gujrat-50700, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Zafar Iqbal
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Khurram Afzal
- Institute of Food Sciences, Bahauddin Zakria University, Multan 60800, Pakistan
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Department of Genetics, Kazan Federal University, 420008 Kazan, Russia
| | - Muhammad Hassham Hassan Bin Asad
- Institute of Fundamental Medicine and Biology, Department of Genetics, Kazan Federal University, 420008 Kazan, Russia
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| |
Collapse
|
8
|
Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MRF. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem Biol Drug Des 2019; 95:16-47. [DOI: 10.1111/cbdd.13633] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dhafer S. Zinad
- Applied Science Department University of Technology Baghdad Iraq
| | - Ahmed Mahal
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Guangzhou HC Pharmaceutical Co., Ltd. Guangzhou China
| | - Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Ashish K. Sarangi
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Mohammad Rizki Fadhil Pratama
- Department of Pharmacy Faculty of Health Sciences Muhammadiyah University of Palangkaraya Palangka Raya Indonesia
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Airlangga University Surabaya Indonesia
| |
Collapse
|
9
|
Ahmed A, Channar PA, Saeed A, Kalesse M, Kazi MA, Larik FA, Abbas Q, Hassan M, Raza H, Seo SY. Synthesis of sulfonamide, amide and amine hybrid pharmacophore, an entry of new class of carbonic anhydrase II inhibitors and evaluation of chemo-informatics and binding analysis. Bioorg Chem 2019; 86:624-630. [PMID: 30807935 DOI: 10.1016/j.bioorg.2019.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/12/2019] [Accepted: 01/27/2019] [Indexed: 11/16/2022]
Abstract
Selective inhibition of carbonic anhydrase (CA) enzyme is an active area of research for medicinal chemists. In the current account, a hybrid pharmacophore approach was employed to design sulfonamide, amide and amine containing new series of potent carbonic anhydrase II inhibitors. The aromatic fragment associated with pharmacophore was altered suitably in order to find effective inhibitors of CA-II. All the derivatives 4a-4m showed better inhibition compared to the standard acetazolamide. In particular, compound 4l exhibited significant inhibition with IC50 value of 0.01796 ± 0.00036 µM. The chemo-informatics analysis justified that all the designed compounds possess <10 HBA and <5 HBD. The ligands-protein binding analyses showed that 4l confined in the active binding pocket with three hydrogen bonds observed with His63, Asn66 and Thr197 residues.
Collapse
Affiliation(s)
- Attique Ahmed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | | | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Markus Kalesse
- Institut für Organische Chemie, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Mehar Ali Kazi
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 32588, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 32588, Republic of Korea
| |
Collapse
|