1
|
Yan J, Li Z, Liang Y, Yang C, Ou W, Mo H, Tang M, Chen D, Zhong C, Que D, Feng L, Xiao H, Song X, Yang P. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct 2023; 14:10052-10068. [PMID: 37861458 DOI: 10.1039/d3fo02633g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background: Myocardial ischemia and reperfusion injury (MIRI) is a severe complication of revascularization therapy in patients with myocardial infarction. Therefore, there is an urgent requirement to find more therapeutic solutions for MIRI. Recently, ferroptosis, which is characterized by lipid peroxidation, was considered a critical contributor to MIRI. Fucoxanthin (FX), a natural antioxidant carotenoid, which is abundant in brown seaweed, exerts protective effects under various pathological conditions. However, whether FX alleviates MIRI is unclear. This study aims to clarify the effects of FX on MIRI. Methods: Mice with left anterior descending artery ligation and reperfusion were used as in vivo models. Neonatal rat cardiomyocytes (NRCs) induced with hypoxia and reperfusion were used as in vitro models. TTC-Evans blue staining was performed to validate the infarction size. Transmission electron microscopy was employed to detect mitochondrial injury in cardiomyocytes. In addition, 4 weeks after MIRI, echocardiography was performed to measure cardiac function; fluorescent probes and western blots were used to detect ferroptosis. Results: TTC-Evans blue staining showed that FX reduced the infarction size induced by MIRI. Transmission electron microscopy showed that FX ameliorated the MIRI-induced myofibril loss and mitochondrion shrinkage. Furthermore, FX improved LVEF and LVFS and inhibited myocardial hypertrophy and fibrosis after 4 weeks in mice with MIRI. In the in vitro study, calcein AM/PI staining and TUNEL staining showed that FX reduced cell death caused by hypoxia and reperfusion treatment. DCFH-DA and MitoSOX probes indicated that FX inhibited cellular and mitochondrial reactive oxygen species (ROS). Moreover, C11-BODIPY 581/591 staining, ferro-orange staining, MDA assay, Fe2+ assay, 4-hydroxynonenal enzyme-linked immunosorbent assay, and western blot were performed and the results revealed that FX ameliorated ferroptosis in vitro and in vivo, as indicated by inhibiting lipid ROS and Fe2+ release, as well as by modulating ferroptosis hallmark FTH, TFRC, and GPX4 expression. Additionally, the protective effects of FX were eliminated by the NRF2 inhibitor brusatol, as observed from western blotting, C11-BODIPY 581/591 staining, and calcein AM/PI staining, indicating that FX exerted cardio-protective effects on MIRI through the NRF2 pathway. Conclusion: Our study showed that FX alleviated MIRI through the inhibition of ferroptosis via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Zehua Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Yu Liang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, the Second Affiliated Hospital, Jinan University, Guangdong, China
| | - Min Tang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Deshu Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chongbin Zhong
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Dongdong Que
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Liyun Feng
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| |
Collapse
|
2
|
Marinković ST, Đukanović Đ, Duran M, Bajic Z, Sobot T, Uletilović S, Mandić-Kovacević N, Cvjetković T, Maksimović ŽM, Maličević U, Vesić N, Jovičić S, Katana M, Šavikin K, Djuric DM, Stojiljković MP, Škrbić R. Pomegranate Peel Extract Attenuates Isoprenaline-Induced Takotsubo-like Myocardial Injury in Rats. Pharmaceutics 2023; 15:1697. [PMID: 37376144 DOI: 10.3390/pharmaceutics15061697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Takotsubo syndrome (TTS) is an acute heart failure syndrome characterised by catecholamine-induced oxidative tissue damage. Punica granatum, a fruit-bearing tree, is known to have high polyphenolic content and has been proven to be a potent antioxidant. This study aimed to investigate the effects of pomegranate peel extract (PoPEx) pre-treatment on isoprenaline-induced takotsubo-like myocardial injury in rats. Male Wistar rats were randomised into four groups. Animals in the PoPEx(P) and PoPEx + isoprenaline group (P + I) were pre-treated for 7 days with 100 mg/kg/day of PoPEx. On the sixth and the seventh day, TTS-like syndrome was induced in rats from the isoprenaline(I) and P + I groups by administering 85 mg/kg/day of isoprenaline. PoPEx pre-treatment led to the elevation of superoxide dismutase and catalase (p < 0.05), reduced glutathione (p < 0.001) levels, decreased the thiobarbituric acid reactive substances (p < 0.001), H2O2, O2- (p < 0.05), and NO2- (p < 0.001), in the P + I group, when compared to the I group. In addition, a significant reduction in the levels of cardiac damage markers, as well as a reduction in the extent of cardiac damage, was found. In conclusion, PoPEx pre-treatment significantly attenuated the isoprenaline-induced myocardial damage, primarily via the preservation of endogenous antioxidant capacity in the rat model of takotsubo-like cardiomyopathy.
Collapse
Affiliation(s)
- Sonja T Marinković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
- Pediatric Clinic, University Clinical Centre of the Republic of Srpska, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Đorđe Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Mladen Duran
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Zorislava Bajic
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Tanja Sobot
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Snežana Uletilović
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Nebojša Mandić-Kovacević
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Tanja Cvjetković
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Žana M Maksimović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Uglješa Maličević
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Nikolina Vesić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Sanja Jovičić
- Department of Histology and Embryology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Maja Katana
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr Josif Pančić", 11000 Belgrade, Serbia
| | - Dragan M Djuric
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miloš P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
3
|
Ma R, Ma Y. Modulatory Effect of Cassia alata Leaf Extract on Isoproterenol-Induced Myocardial Inflammation and Fibrosis in Male Albino Wistar Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1456.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Khalil HMA, Mahmoud DB, El-Shiekh RA, Bakr AF, Boseila AA, Mehanna S, Naggar RA, Eliwa HA. Antidepressant and Cardioprotective Effects of Self-Nanoemulsifying Self-Nanosuspension Loaded with Hypericum perforatum on Post-Myocardial Infarction Depression in Rats. AAPS PharmSciTech 2022; 23:243. [PMID: 36028598 DOI: 10.1208/s12249-022-02387-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022] Open
Abstract
Hypericum perforatum (HP) is characterized by potent medicinal activity. However, the poor water solubility of many HP constituents limits their therapeutic effectiveness. Self-nanoemulsifying self-nanosuspension loaded with HP (HP.SNESNS) was formulated to improve the bioefficacy of HP. It was prepared using 10% triacetin, 57% Tween 20, and 33% PEG 400 and then incorporated with HP extract (100 mg/mL). HP.SNESNS demonstrated a bimodal size distribution (258.65 ± 29.35 and 9.08 ± 0.01 nm) corresponding to nanosuspension and nanoemulsion, respectively, a zeta potential of -8.03 mV, and an enhanced dissolution profile. Compared to the unformulated HP (100 mg/kg), HP.SNESNS significantly improved cardiac functions by decreasing the serum myocardial enzymes, nitric oxide (NO), and tumor necrosis factor- α (TNF-α) as well as restoring the heart tissue's normal architecture. Furthermore, it ameliorates anxiety, depressive-like behavior, and cognitive dysfunction by decreasing brain TNF-α, elevating neurotransmitters (norepinephrine and serotonin), and brain-derived neurotrophic factor (BDNF). In addition, HP.SNESNS augmented the immunohistochemical expression of cortical and hippocampal glial fibrillary acidic protein (GFAP) levels while downregulating the cortical Bcl-2-associated X protein (Bax) expression levels. Surprisingly, these protective activities were comparable to the HP (300 mg/kg). In conclusion, HP.SNESNS (100 mg/kg) exerted antidepressant and cardioprotective activities in the post-MI depression rat model.
Collapse
Affiliation(s)
- Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| | - Dina B Mahmoud
- Department of Pharmaceutics, Egyptian Drug Authority Formerly Known As National Organization for Drug Control and Research (NODCAR), Giza, Egypt.,Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, 04317, Leipzig, Germany
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini st, Cairo, 11562, Egypt
| | - Alaa F Bakr
- Pathology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Amira A Boseila
- Department of Pharmaceutics, Egyptian Drug Authority Formerly Known As National Organization for Drug Control and Research (NODCAR), Giza, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara branch, Sinai, 41636, Egypt
| | - Sally Mehanna
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Reham A Naggar
- Department of Pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza, 12566, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza, 12566, Egypt
| |
Collapse
|
5
|
Hamdan DI, Hafez SS, Hassan WHB, Morsi MM, Khalil HMA, Ahmed YH, Ahmed-Farid OA, El-Shiekh RA. Chemical profiles with cardioprotective and anti-depressive effects of Morus macroura Miq. leaves and stem branches dichloromethane fractions on isoprenaline induced post-MI depression. RSC Adv 2022; 12:3476-3493. [PMID: 35425386 PMCID: PMC8979319 DOI: 10.1039/d1ra08320a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
This study was conducted to explore the potential cardioprotective and anti-depressive effects of dichloromethane (DCM) fractions of Morus macroura leaves (L) and stem branches (S) on post-myocardial infarction (MI) depression induced by isoprenaline (ISO) in rats in relation to their metabolites. The study was propped with a UPLC-ESI-MS/MS profiling and chromatographic isolation of the secondary metabolites. Column chromatography revealed the isolation of lupeol palmitate (6) that was isolated for the first time from nature with eight known compounds. In addition, more than forty metabolites belonging, mainly to flavonoids, and anthocyanins groups were identified. The rats were injected with ISO (85 mg kg−1, s.c) in the first two days, followed by the administration of M. macroura DCM-L and DCM-S fractions (200 mg kg−1 p.o) for 19 days. Compared with the ISO exposed rats, the treated rats displayed a reduction in cardiac biomarkers (LDH and CKMB), anxiety, and depressive-like behaviour associated with an increase in the brain defense system (SOD and GSH), neuronal cell energy, GABA, serotonin, and dopamine, confirmed by histopathological investigations. In conclusion, DCM-L and DCM-S fractions' cardioprotective and anti-depressive activities are attributed to their metabolite profile. Therefore, they could serve as a potential agent in amending post-MI depression. This study was conducted to explore the potential cardioprotective and anti-depressive effects of dichloromethane fractions of Morus macroura leaves and stem branches on post-myocardial infarction depression induced by isoprenaline in rats in relation to their metabolites.![]()
Collapse
Affiliation(s)
- Dalia I Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Samia S Hafez
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Wafaa H B Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Mai M Morsi
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt +201013666331
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research Giza Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El Aini St. Cairo 11562 Egypt +201064763764
| |
Collapse
|
6
|
Medhet M, El-Bakly WM, Badr AM, Awad A, El-Demerdash E. Thymoquinone attenuates isoproterenol-induced myocardial infarction by inhibiting cytochrome C and matrix metalloproteinase-9 expression. Clin Exp Pharmacol Physiol 2021; 49:391-405. [PMID: 34767666 DOI: 10.1111/1440-1681.13614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Thymoquinone (TQ) is the main active constituent of Nigella sativa. The present study aimed to investigate the effect of TQ on apoptotic parameters and MMP-9 expression in isoproterenol (ISP)-induced myocardial infarction (MI). TQ was given once daily for 7 days at doses of 10 and 20 mg/kg orally with ISP (86 mg/kg; s.c.) administered on the sixth and seventh days. TQ pre-treatment protected against ISP-induced MI as approved by normalisation of electrocardiogram (ECG) and b (CK)-MB, minimal histopathological changes, and reduction of the infarction size. Effects of TQ could be supported by its antioxidant activity, evidenced by the increase of cardiac reduced glutathione and total serum antioxidant capacity, and the inhibition of ISO-induced lipid peroxidation. TQ anti-inflammatory activity was associated with reduced expression of NF-κB and TNF-α. TQ ameliorated cardiomyocytes, apoptotic pathways by inhibiting both the intrinsic pathway, via reducing cytoplasmic cytochrome C, and the extrinsic pathway, by inhibiting TNF-α and caspases, and the effect of TQ was dose-dependent. Moreover, TQ reduced the expression of metalloproteinase (MMP)-9, which is considered as a prognostic marker of ventricular remodelling, recommending that TQ can be used as a possible supplement to minimise post-MI changes. So, we conclude that TQ antiapoptotic activity and the inhibitory modulation of MMP-9 expression contribute to TQ protective effects in MI. To our knowledge, this is the first study reporting the effect of TQ on cytochrome c activity and MMP-9 expression in MI.
Collapse
Affiliation(s)
- Marwa Medhet
- Department of Crime Investigation Research, The National Centre for Social & Criminological Research, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira M Badr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azza Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Zhang T, Dang M, Zhang W, Lin X. Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111705. [PMID: 31812087 DOI: 10.1016/j.jphotobiol.2019.111705] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
The procurance of gold nanoparticles in the plant extracts is an excellent way to attain nanomaterials natural and eco-friendly nanomaterials. The Dehydrated roots of Chinese Euphorbia fischeriana flowering plant are called "Lang-Du". In this study, the retrieving of gold nanoparticles from Euphorbia fischeriana root was amalgamated by standard procedure. Fabricated gold nanoparticles were portrayed through the investigations of ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The UV-Vis and FTIR results explicated the obtained particles were sphere-shaped and the terpenoids of Euphorbia fischeriana had strong communications with gold surface. The HRTEM and XRD images exposed the produced gold nanoparticles had an extreme composition of crystal arrangement and excellent uniformed size of particles. In our study, the Isoprenaline induced myocardial damage established the elevation in TBARS, LOOH of heart tissues and notable decline in antioxidant enzymes SOD, CAT, GPx, and GSH. This biochemical result was additionally proved by histopathological assessment. Remarkably, the pretreatment with EF-AuNps(50 mg/kg b.w) illustrated stabilized levels of serum creatine and cardiotropins in myocardial infarcted animals. And further we understood the essential function of NF-ƙB, TNF-α, IL-6 signaling molecules and its way progression in the development of vascular tenderness.
Collapse
Affiliation(s)
- Tipeng Zhang
- Department of Cardiovascular Diseases, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450007, China
| | - Minyan Dang
- Innoscience Research SdnBhd, Jalan USJ 25/1, 47650 Subang Jaya, Selangor, Malaysia
| | - Wenzhi Zhang
- Innoscience Research SdnBhd, Jalan USJ 25/1, 47650 Subang Jaya, Selangor, Malaysia
| | - Xue Lin
- Emergency Department, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027 China.
| |
Collapse
|
8
|
Bei W, Jing L, Chen N. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloids Surf B Biointerfaces 2019; 185:110635. [PMID: 31744760 DOI: 10.1016/j.colsurfb.2019.110635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/23/2023]
Abstract
Wogonin, one of the main active ingredients of Scutellaria radix, is a kind of flavonoid compound. In the present study, we report that wogonin nanoparticles (Wog np) protect Isoproterenol (ISO) induced Myocardial Infarction (MI) rats. Nanoparticles of sizes less than 200 nm with spherical shape were prepared using Polylactic-co-glycolic acid (PLGA) and Polyvinyl alcohol (PVA) respectively as polymer and stabilizer. Male Wistar rats were divided into 4 groups. Group 1 as a control group administered with physiological saline solution with 0.5 % carboxymethylcellulose (1 mL/day). Group 2 served as toxic group; rats received physiological saline solution with 0.5 % carboxymethylcellulose (1 mL/day) orally for 21 days Groups 3 and 4 received Wog np (25 and 50 mg/kg/day) orally for 21 days and on the 20th and 21 st days group 2, 3, and 4 were administered with ISO (85 mg/kg) through s.c. route at 24 h interval. pre-treatment with Wog np (25 and 50 mg/kg) could significantly reduce the cardiac infarct size, serum cardiac markers, lipid peroxidation product (MDA) and inflammatory markers as well as markedly upregulated the protein expression of nuclear factor erythroid 2-related factor (Nrf2)and heme oxygenase-1 (HO-1) to confer its strong cardioprotective activity against ISO induced myocardial damage.
Collapse
Affiliation(s)
- Wan Bei
- Department of Cardiology, Central Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Hubei Province, 4320000, China
| | - Li Jing
- Department of Cardiology, Central Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Hubei Province, 4320000, China
| | - Nie Chen
- Department of Cardiology, Central Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Hubei Province, 4320000, China.
| |
Collapse
|
9
|
Ojo OO, Rotimi S, Adegbite OS, Ozuem TI. Bridelia ferruginea Inhibit Rat Heart and Liver Mitochondrial Membrane Permeability Transition Pore Opening Following Myocardial Infarction. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09950-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|