1
|
Zhao W, Huang R, Ran D, Zhang Y, Qu Z, Zheng S. Inhibiting HSD17B8 suppresses the cell proliferation caused by PTEN failure. Sci Rep 2024; 14:12280. [PMID: 38811827 PMCID: PMC11137105 DOI: 10.1038/s41598-024-63052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Loss of the tumor suppressor PTEN homolog daf-18 in Caenorhabditis elegans (C. elegans) triggers diapause cell division during L1 arrest. While prior studies have delved into established pathways, our investigation takes an innovative route. Through forward genetic screening in C. elegans, we pinpoint a new player, F12E12.11, regulated by daf-18, impacting cell proliferation independently of PTEN's typical phosphatase activity. F12E12.11 is an ortholog of human estradiol 17-beta-dehydrogenase 8 (HSD17B8), which converts estradiol to estrone through its NAD-dependent 17-beta-hydroxysteroid dehydrogenase activity. We found that PTEN engages in a physical interplay with HSD17B8, introducing a distinctive suppression mechanism. The reduction in estrone levels and accumulation of estradiol may arrest tumor cells in the G2/M phase of the cell cycle through MAPK/ERK. Our study illuminates an unconventional protein interplay, providing insights into how PTEN modulates tumor suppression by restraining cell division through intricate molecular interactions.
Collapse
Affiliation(s)
- Wei Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, Henan Province, China
| | - Ruiting Huang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
| | - Dongyang Ran
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yutong Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng, Henan Province, China.
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan Province, China.
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
2
|
Hack W, Gladen-Kolarsky N, Chatterjee S, Liang Q, Maitra U, Ciesla L, Gray NE. Gardenin A treatment attenuates inflammatory markers, synuclein pathology and deficits in tyrosine hydroxylase expression and improves cognitive and motor function in A53T-α-syn mice. Biomed Pharmacother 2024; 173:116370. [PMID: 38458012 PMCID: PMC11017674 DOI: 10.1016/j.biopha.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6J mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced pSyn levels in both the cortex and hippocampus and attenuated the reduction in TH expression in the striatum seen in A53Tsyn mice. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models.
Collapse
Affiliation(s)
- Wyatt Hack
- Oregon Health & Science University, Neurology, Portland, United States
| | | | | | - Qiaoli Liang
- University of Alabama, Mass spectrometry facility, Chemistry and Biochemistry, Tuscaloosa, United States
| | - Urmila Maitra
- University of Alabama, Biological Sciences, Tuscaloosa, United States
| | - Lukasz Ciesla
- University of Alabama, Biological Sciences, Tuscaloosa, United States.
| | - Nora E Gray
- Oregon Health & Science University, Neurology, Portland, United States.
| |
Collapse
|
3
|
Aly TAA, Mohamed SM, Khattab MS, Abido AMM, Abdel‐Rahim EA, Al‐Farga A, Sarpong F, Aqlan F. Clover microgreen incorporation in diet-controlled diabetes and counteracted aflatoxicosis of rats. Food Sci Nutr 2023; 11:7605-7617. [PMID: 38107117 PMCID: PMC10724634 DOI: 10.1002/fsn3.3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023] Open
Abstract
Diabetes mellitus is one of the chronic metabolic diseases whose control remains a challenge. Its increased incidence was mainly attributed to increased environmental contamination. Therefore, this study aims to investigate the effect of feeding clover microgreen (CM) on a diabetes model with or without aflatoxin exposure. Rats were distributed into 8 groups. G1 was a control group. G2 was fed CM. G3 was administered aflatoxin orally. G4 was fed clover and administered aflatoxin. G5 was diabetic rats. G6 was diabetic rats fed CM. G7 was diabetic rats administered aflatoxin. G8 was diabetic rats administered aflatoxin and fed CM. Phytochemical analysis of the CM showed that gardenin was the most common compound. The administration of aflatoxin aggravated diabetes. The groups fed CM showed a decreased glucose concentration compared to the unfed groups. Liver and kidney function parameters were improved by CM. The histopathological alteration of the pancreas, liver, and kidneys was relieved in CM-fed groups. The area % of insulin in islets of Langerhans was increased in CM-fed groups. Feeding CM also enhanced the oxidative stress biomarkers. In conclusion, CM improved all evaluated parameters in diabetic rats either exposed to aflatoxin or not compared to the control.
Collapse
Affiliation(s)
- Tahany A. A. Aly
- Regional Center For Food and Feed, Agriculture Research CenterMinistry of AgricultureGizaEgypt
| | - Sara M. Mohamed
- Regional Center For Food and Feed, Agriculture Research CenterMinistry of AgricultureGizaEgypt
| | - Marwa S. Khattab
- Pathology Department, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| | - Ahmed M. M. Abido
- Regional Center For Food and Feed, Agriculture Research CenterMinistry of AgricultureGizaEgypt
| | | | - Ammar Al‐Farga
- Department of Biochemistry, College of ScienceUniversity of JeddahJeddahSaudi Arabia
| | - Frederick Sarpong
- Council for Scientific and Industrial Research‐ Oil Palm Research InstituteKadeGhana
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| |
Collapse
|
4
|
Hack W, Gladen-Kolarsky N, Chatterjee S, Liang Q, Maitra U, Ciesla L, Gray NE. Gardenin A improves cognitive and motor function in A53T-α-syn mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564401. [PMID: 37961574 PMCID: PMC10634905 DOI: 10.1101/2023.10.27.564401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6 mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced cortical and hippocampal levels of pSyn and attenuated the reduction in TH expression in the striatum. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models. Significance Statement The polymethoxyflavone Gardenin A can improve cognitive and motor function and attenuate both increases in phosphorylated alpha synuclein and reductions in tyrosine hydroxylase expression in A53T alpha synuclein overexpressing mice. These effects may be related to activation of the NRF2-regulated antioxidant response and downregulation of NFkB-dependent inflammatory response by Gardenin A in treated animals. The study also showed excellent brain bioavailability of Gardenin A and modifications of the lipid profile, possibly through interactions between Gardenin A with the lipid bilayer, following oral administration. The study confirms neuroprotective activity of Gardenin A previously reported in toxin induced Drosophila model of Parkinson's disease.
Collapse
|
5
|
Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In Vivo Neuropharmacological Effects of Neophytadiene. Molecules 2023; 28:molecules28083457. [PMID: 37110691 PMCID: PMC10142729 DOI: 10.3390/molecules28083457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Neophytadiene (NPT) is a diterpene found in the methanolic extracts of Crataeva nurvala and Blumea lacera, plants reported with anxiolytic-like activity, sedative properties, and antidepressant-like actions; however, the contribution of neophytadiene to these effects is unknown. This study determined the neuropharmacological (anxiolytic-like, antidepressant-like, anticonvulsant, and sedative) effects of neophytadiene (0.1-10 mg/kg p.o.) and determined the mechanisms of action involved in the neuropharmacological actions using inhibitors such as flumazenil and analyzing the possible interaction of neophytadiene with GABA receptors using a molecular docking study. The behavioral tests were evaluated using the light-dark box, elevated plus-maze, open field, hole-board, convulsion, tail suspension, pentobarbital-induced sleeping, and rotarod. The results showed that neophytadiene exhibited anxiolytic-like activity only to the high dose (10 mg/kg) in the elevated plus-maze and hole-board tests, and anticonvulsant actions in the 4-aminopyridine and pentylenetetrazole-induced seizures test. The anxiolytic-like and anticonvulsant effects of neophytadiene were abolished with the pre-treatment with 2 mg/kg flumazenil. In addition, neophytadiene showed low antidepressant effects (about 3-fold lower) compared to fluoxetine. On other hand, neophytadiene had no sedative or locomotor effects. In conclusion, neophytadiene exerts anxiolytic-like and anticonvulsant activities with the probable participation of the GABAergic system.
Collapse
Affiliation(s)
- Maria L Gonzalez-Rivera
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Juan Carlos Barragan-Galvez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Deisy Gasca-Martínez
- Unidad de Análisis Conductual, Instituto de Neurobiología, Campus UNAM-Juriquilla, Juriquilla 76230, Mexico
| | - Sergio Hidalgo-Figueroa
- CONACyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| |
Collapse
|
6
|
Baehr C, Kassick AJ, Vigliaturo J, Luengas D, Khaimraj A, Pravetoni M, Averick SE, Raleigh MD. Anti-Strychnine Immunoconjugate Reduces the Effects of Strychnine-Induced Toxicity in Mice. ACS Chem Neurosci 2023; 14:1291-1298. [PMID: 36952479 DOI: 10.1021/acschemneuro.2c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Strychnine poisoning induces seizures that result in loss of control of airway muscles, leading to asphyxiation and subsequent death. Current treatment options are limited, requiring hands-on medical care and isolation to low-stimulus environments. Anticonvulsants and muscle relaxants have shown limited success in cases of severe toxicity. Furthermore, nonfatal strychnine poisoning is likely to result in long-term muscular and cognitive damage. Due to its potency, accessibility, and lack of effective antidotes, strychnine poses a unique threat for mass casualty incidents. As a first step toward developing an anti-strychnine immunotherapy to reduce or prevent strychnine-induced seizures, a strychnine vaccine was synthesized using subunit keyhole limpet hemocyanin. Mice were vaccinated with the strychnine immunoconjugate and then given a 0.75 mg/kg IP challenge of strychnine and observed for seizures for 30 min. Vaccination reduced strychnine-induced events, and serum strychnine levels were increased while brain strychnine levels were decreased in vaccinated animals compared to the control. These data demonstrate that strychnine-specific antibodies can block the seizure-inducing effects of strychnine and could be used to develop a therapeutic for strychnine poisoning.
Collapse
Affiliation(s)
- Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Andrew J Kassick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Jennifer Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Diego Luengas
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Department of Psychiatry and Behavioral Sciences, and Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98104, United States
| | - Saadyah E Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Michael D Raleigh
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Wang C, Yang S, Deng J, Shi L, Chang J, Meng J, Liu W, Zeng J, Xing K, Wen J, Liang B, Xing D. The research progress on the anxiolytic effect of plant-derived flavonoids by regulating neurotransmitters. Drug Dev Res 2023; 84:458-469. [PMID: 36744648 DOI: 10.1002/ddr.22038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
Phytopharmaceuticals have attracted a lot of attention due to their multicomponent and multiple targets. The natural phenolic chemicals known as flavonoids are found in a wide variety of plants, fruits, vegetables, and herbs. Recently, they have been found to have modulatory effects on anxiety disorders, with current research focusing on the modulation of neurotransmitters. There has not yet been a review of the various natural flavonoid monomer compounds and total plant flavonoids that have been found to have anxiolytic effects. The study on the anti-anxiety effects of plant-derived flavonoids on neurotransmitters was reviewed in this paper. We, therefore, anticipate that further study on the conformational interaction underlying flavonoids' anti-anxiety effects will offer a theoretical framework for the creation of pertinent treatments.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingsen Meng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jun Zeng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester, UK
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Neuropharmacological Effects in Animal Models and HPLC-Phytochemical Profiling of Byrsonima crassifolia (L.) Kunth Bark Extracts. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020764. [PMID: 36677821 PMCID: PMC9867209 DOI: 10.3390/molecules28020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
B. crassifolia is a species that grows in various areas of Latin America. It was known to be useful for the treatment of different human ailments. The present work evaluated the neuropharmacological and analgesic effects of hydroalcoholic and dichloromethane extracts of B. crassifolia. The effect on the central nervous system (CNS) of both extracts obtained from bark, administered by the intraperitoneal route in mice, was evaluated by different tests: spontaneous motor activity, hole-board, motor coordination, pentobarbital induced hypnosis, and rectal temperature. Analgesic activity was evaluated using a hot plate test. Phytochemical analysis was performed by high-performance liquid chromatography (HPLC) using reversed-phase and gradient of elution. The hydroalcoholic extract (dose 0.5 g dry plant/kg weigh) administration caused an important reduction of the head-dipping response in the hole board test. A decrease in spontaneous motor activity test and a disturbance of motor coordination in the rotarod test was observed. The hydroalcoholic extract produced a significant prolongation of pentobarbital induced sleeping time. This extract prevented hot plate test induced nociception. The phytochemical analysis revealed the presence of catechin, epicatechin, and procyanidin B12. Therefore, this study revealed that the hydroalcoholic extract of B. crassifolia possesses analgesic and sedative CNS activity.
Collapse
|
9
|
Bui BP, Nguyen PL, Do HTT, Cho J. Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice. J Ginseng Res 2022; 46:819-829. [PMID: 36312738 PMCID: PMC9597442 DOI: 10.1016/j.jgr.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Background Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.
Collapse
Affiliation(s)
| | | | | | - Jungsook Cho
- Corresponding author. College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea.
| |
Collapse
|
10
|
Liang Y, Huang R, Chen Y, Zhong J, Deng J, Wang Z, Wu Z, Li M, Wang H, Sun Y. Study on the Sleep-Improvement Effects of Hemerocallis citrina Baroni in Drosophila melanogaster and Targeted Screening to Identify Its Active Components and Mechanism. Foods 2021; 10:foods10040883. [PMID: 33920660 PMCID: PMC8072781 DOI: 10.3390/foods10040883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Hemerocallis citrina Baroni (HC) is an edible plant in Asia, and it has been traditionally used for sleep-improvement. However, the bioactive components and mechanism of HC in sleep-improvement are still unclear. In this study, the sleep-improvement effect of HC hydroalcoholic extract was investigated based on a caffeine-induced insomnia model in Drosophila melanogaster (D. melanogaster), and the ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-ESI-Orbitrap-MS) and network pharmacology strategy were further combined to screen systematically the active constituents and mechanism of HC in sleep-improvement. The results suggested HC effectively regulated the number of nighttime activities and total sleep time of D. melanogaster in a dose-dependent manner and positively regulated the sleep bouts and sleep duration of D. melanogaster. The target screening suggested that quercetin, luteolin, kaempferol, caffeic acid, and nicotinic acid were the main bioactive components of HC in sleep-improvements. Moreover, the core targets (Akt1, Cat, Ple, and Sod) affected by HC were verified by the expression of the mRNA of D. melanogaster. In summary, this study showed that HC could effectively regulate the sleep of D. melanogaster and further clarifies the multi-component and multi-target features of HC in sleep-improvement, which provides a new insight for the research and utilization of HC.
Collapse
|
11
|
Maitra U, Harding T, Liang Q, Ciesla L. GardeninA confers neuroprotection against environmental toxin in a Drosophila model of Parkinson's disease. Commun Biol 2021; 4:162. [PMID: 33547411 PMCID: PMC7864937 DOI: 10.1038/s42003-021-01685-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson’s disease is an age-associated neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons from the midbrain. Epidemiological studies have implicated exposures to environmental toxins like the herbicide paraquat as major contributors to Parkinson’s disease etiology in both mammalian and invertebrate models. We have employed a paraquat-induced Parkinson’s disease model in Drosophila as an inexpensive in vivo platform to screen therapeutics from natural products. We have identified the polymethoxyflavonoid, GardeninA, with neuroprotective potential against paraquat-induced parkinsonian symptoms involving reduced survival, mobility defects, and loss of dopaminergic neurons. GardeninA-mediated neuroprotection is not solely dependent on its antioxidant activities but also involves modulation of the neuroinflammatory and cellular death responses. Furthermore, we have successfully shown GardeninA bioavailability in the fly heads after oral administration using ultra-performance liquid chromatography and mass spectrometry. Our findings reveal a molecular mechanistic insight into GardeninA-mediated neuroprotection against environmental toxin-induced Parkinson’s disease pathogenesis for novel therapeutic intervention. Maitra and colleagues identify the neuroprotective properties of GardeninA against environmental toxin-induced neurodegeneration in Drosophila. This study has the potential to influence future research into toxin-induced Parkinson’s disease pathogenesis.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL, 35487-0344, USA.
| | - Thomas Harding
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL, 35487-0344, USA
| | - Qiaoli Liang
- Mass Spectrometry Facility, Department of Chemistry and Biochemistry, University of Alabama, 2004 Shelby Hall, Tuscaloosa, AL, 35487-0336, USA
| | - Lukasz Ciesla
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL, 35487-0344, USA.
| |
Collapse
|