1
|
Funari A, Fiscon G, Paci P. Network medicine and systems pharmacology approaches to predicting adverse drug effects. Br J Pharmacol 2024. [PMID: 39262113 DOI: 10.1111/bph.17330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Identifying and understanding the relationships between drug intake and adverse effects that can occur due to inadvertent molecular interactions between drugs and targets is a difficult task, especially considering the numerous variables that can influence the onset of such events. The ability to predict these side effects in advance would help physicians develop strategies to avoid or counteract them. In this article, we review the main computational methods for predicting side effects caused by drug molecules, highlighting their performance, limitations and application cases. Furthermore, we provide an overall view of resources, such as databases and tools, useful for building side effect prediction analyses.
Collapse
Affiliation(s)
- Alessio Funari
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Wang G, Feng H, Cao C. BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation. J Comput Biol 2024. [PMID: 39049806 DOI: 10.1089/cmb.2024.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Research on drug-drug interaction (DDI) prediction, particularly in identifying DDI event types, is crucial for understanding adverse drug reactions and drug combinations. This work introduces a Bidirectional Recurrent Neural Network model for DDI event type prediction (BiRNN-DDI), which simultaneously considers structural relationships and contextual information. Our BiRNN-DDI model constructs drug feature graphs to mine structural relationships. For contextual information, it transforms drug graphs into sequences and employs a two-channel structure, integrating BiRNN, to obtain contextual representations of drug-drug pairs. The model's effectiveness is demonstrated through comparisons with state-of-the-art models on two DDI event-type benchmarks. Extensive experimental results reveal that BiRNN-DDI surpasses other models in accuracy, AUPR, AUC, F1 score, Precision, and Recall metrics on both small and large datasets. Additionally, our model exhibits a lower parameter space, indicating more efficient learning of drug feature representations and prediction of potential DDI event types.
Collapse
Affiliation(s)
- GuiShen Wang
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Hui Feng
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Bai H, Lu S, Zhang T, Cui H, Nakaguchi T, Xuan P. Graph reasoning method enhanced by relational transformers and knowledge distillation for drug-related side effect prediction. iScience 2024; 27:109571. [PMID: 38799562 PMCID: PMC11126883 DOI: 10.1016/j.isci.2024.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/29/2023] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
Identifying the side effects related to drugs is beneficial for reducing the risk of drug development failure and saving the drug development cost. We proposed a graph reasoning method, RKDSP, to fuse the semantics of multiple connection relationships, the local knowledge within each meta-path, the global knowledge among multiple meta-paths, and the attributes of the drug and side effect node pairs. We constructed drug-side effect heterogeneous graphs consisting of the drugs, side effects, and their similarity and association connections. Multiple relational transformers were established to learn node features from diverse meta-path semantic perspectives. A knowledge distillation module was constructed to learn local and global knowledge of multiple meta-paths. Finally, an adaptive convolutional neural network-based strategy was presented to adaptively encode the attributes of each drug-side effect node pair. The experimental results demonstrated that RKDSP outperforms the compared state-of-the-art prediction approaches.
Collapse
Affiliation(s)
- Honglei Bai
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Siyuan Lu
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
- School of Mathematical Science, Heilongjiang University, Harbin, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC, Australia
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Ping Xuan
- Department of Computer Science and Technology, Shantou University, Shantou, China
| |
Collapse
|
4
|
Toni E, Ayatollahi H, Abbaszadeh R, Fotuhi Siahpirani A. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review. Pharmaceuticals (Basel) 2024; 17:795. [PMID: 38931462 PMCID: PMC11206653 DOI: 10.3390/ph17060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Drug safety relies on advanced methods for timely and accurate prediction of side effects. To tackle this requirement, this scoping review examines machine-learning approaches for predicting drug-related side effects with a particular focus on chemical, biological, and phenotypical features. METHODS This was a scoping review in which a comprehensive search was conducted in various databases from 1 January 2013 to 31 December 2023. RESULTS The results showed the widespread use of Random Forest, k-nearest neighbor, and support vector machine algorithms. Ensemble methods, particularly random forest, emphasized the significance of integrating chemical and biological features in predicting drug-related side effects. CONCLUSIONS This review article emphasized the significance of considering a variety of features, datasets, and machine learning algorithms for predicting drug-related side effects. Ensemble methods and Random Forest showed the best performance and combining chemical and biological features improved prediction. The results suggested that machine learning techniques have some potential to improve drug development and trials. Future work should focus on specific feature types, selection techniques, and graph-based methods for even better prediction.
Collapse
Affiliation(s)
- Esmaeel Toni
- Medical Informatics, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran 14496-14535;
| | - Haleh Ayatollahi
- Medical Informatics, Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran 1996-713883
| | - Reza Abbaszadeh
- Pediatric Cardiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran 19956-14331;
| | - Alireza Fotuhi Siahpirani
- Systems Biology and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran 14176-14411;
| |
Collapse
|
5
|
Ahammad I, Jamal TB, Lamisa AB, Bhattacharjee A, Zinan N, Hasan Chowdhury MZ, Naimul Islam SM, Faruque KMO, Mahmud Chowdhury Z, Uzzal Hossain M, Chandra Das K, Ara Keya C, Salimullah M. Subtractive genomics study of Xanthomonas oryzae pv. Oryzae reveals repurposable drug candidate for the treatment of bacterial leaf blight in rice. J Genet Eng Biotechnol 2024; 22:100353. [PMID: 38494267 PMCID: PMC10980872 DOI: 10.1016/j.jgeb.2024.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae is a plant pathogen responsible for causing one of the most severe bacterial diseases in rice, known as bacterial leaf blight that poses a major threat to global rice production. Even though several experimental compounds and chemical agents have been tested against X. oryzae pv. oryzae, still no approved drug is available. In this study, a subtractive genomic approach was used to identify potential therapeutic targets and repurposible drug candidates that could control of bacterial leaf blight in rice plants. RESULTS The entire proteome of the pathogen underwent an extensive filtering process which involved removal of the paralogous proteins, rice homologs, non-essential proteins. Out of the 4382 proteins present in Xoo proteome, five hub proteins such as dnaA, dnaN, recJ, ruvA, and recR were identified for the druggability analysis. This analysis led to the identification of dnaN-encoded Beta sliding clamp protein as a potential therapeutic target and one experimental drug named [(5R)-5-(2,3-dibromo-5-ethoxy-4hydroxybenzyl)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid that can be repurposed against it. Molecular docking and 100 ns long molecular dynamics simulation suggested that the drug can form stable complexes with the target protein over time. CONCLUSION Findings from our study indicated that the proposed drug showed potential effectiveness against bacterial leaf blight in rice caused by X. oryzae pv. oryzae. It is essential to keep in consideration that the procedure for developing novel drugs can be challenging and complicated. Even the most promising results from in silico studies should be validated through further in vitro and in vivo investigation before approval.
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Tabassum Binte Jamal
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Anika Bushra Lamisa
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Nayeematul Zinan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
| |
Collapse
|
6
|
Zhong Y, Seoighe C, Yang H. Non-Negative matrix factorization combined with kernel regression for the prediction of adverse drug reaction profiles. BIOINFORMATICS ADVANCES 2024; 4:vbae009. [PMID: 38736682 PMCID: PMC11087822 DOI: 10.1093/bioadv/vbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 05/14/2024]
Abstract
Motivation Post-market unexpected Adverse Drug Reactions (ADRs) are associated with significant costs, in both financial burden and human health. Due to the high cost and time required to run clinical trials, there is significant interest in accurate computational methods that can aid in the prediction of ADRs for new drugs. As a machine learning task, ADR prediction is made more challenging due to a high degree of class imbalance and existing methods do not successfully balance the requirement to detect the minority cases (true positives for ADR), as measured by the Area Under the Precision-Recall (AUPR) curve with the ability to separate true positives from true negatives [as measured by the Area Under the Receiver Operating Characteristic (AUROC) curve]. Surprisingly, the performance of most existing methods is worse than a naïve method that attributes ADRs to drugs according to the frequency with which the ADR has been observed over all other drugs. The existing advanced methods applied do not lead to substantial gains in predictive performance. Results We designed a rigorous evaluation to provide an unbiased estimate of the performance of ADR prediction methods: Nested Cross-Validation and a hold-out set were adopted. Among the existing methods, Kernel Regression (KR) performed best in AUPR but had a disadvantage in AUROC, relative to other methods, including the naïve method. We proposed a novel method that combines non-negative matrix factorization with kernel regression, called VKR. This novel approach matched or exceeded the performance of existing methods, overcoming the weakness of the existing methods. Availability Code and data are available on https://github.com/YezhaoZhong/VKR.
Collapse
Affiliation(s)
- Yezhao Zhong
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Cathal Seoighe
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Haixuan Yang
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91 TK33, Ireland
| |
Collapse
|
7
|
Stevenson GA, Kirshner D, Bennion BJ, Yang Y, Zhang X, Zemla A, Torres MW, Epstein A, Jones D, Kim H, Bennett WFD, Wong SE, Allen JE, Lightstone FC. Clustering Protein Binding Pockets and Identifying Potential Drug Interactions: A Novel Ligand-Based Featurization Method. J Chem Inf Model 2023; 63:6655-6666. [PMID: 37847557 PMCID: PMC10647021 DOI: 10.1021/acs.jcim.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 10/18/2023]
Abstract
Protein-ligand interactions are essential to drug discovery and drug development efforts. Desirable on-target or multitarget interactions are the first step in finding an effective therapeutic, while undesirable off-target interactions are the first step in assessing safety. In this work, we introduce a novel ligand-based featurization and mapping of human protein pockets to identify closely related protein targets and to project novel drugs into a hybrid protein-ligand feature space to identify their likely protein interactions. Using structure-based template matches from PDB, protein pockets are featured by the ligands that bind to their best co-complex template matches. The simplicity and interpretability of this approach provide a granular characterization of the human proteome at the protein-pocket level instead of the traditional protein-level characterization by family, function, or pathway. We demonstrate the power of this featurization method by clustering a subset of the human proteome and evaluating the predicted cluster associations of over 7000 compounds.
Collapse
Affiliation(s)
- Garrett A. Stevenson
- Computational
Engineering Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Dan Kirshner
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Brian J. Bennion
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Yue Yang
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Xiaohua Zhang
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Adam Zemla
- Global
Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Marisa W. Torres
- Global
Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Aidan Epstein
- Global
Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Derek Jones
- Global
Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department
of Computer Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| | - Hyojin Kim
- Center
for Applied Scientific Computing, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - W. F. Drew Bennett
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Sergio E. Wong
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Jonathan E. Allen
- Global
Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Felice C. Lightstone
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
8
|
He C, Qu Y, Yin J, Zhao Z, Ma R, Duan L. Cross-view contrastive representation learning approach to predicting DTIs via integrating multi-source information. Methods 2023; 218:176-188. [PMID: 37586602 DOI: 10.1016/j.ymeth.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Drug-target interaction (DTI) prediction serves as the foundation of new drug findings and drug repositioning. For drugs/targets, the sequence data contains the biological structural information, while the heterogeneous network contains the biochemical functional information. These two types of information describe different aspects of drugs and targets. Due to the complexity of DTI machinery, it is necessary to learn the representation from multiple perspectives. We hereby try to design a way to leverage information from multi-source data to the maximum extent and find a strategy to fuse them. To address the above challenges, we propose a model, named MOVE (short for integrating multi-source information for predicting DTI via cross-view contrastive learning), for learning comprehensive representations of each drug and target from multi-source data. MOVE extracts information from the sequence view and the network view, then utilizes a fusion module with auxiliary contrastive learning to facilitate the fusion of representations. Experimental results on the benchmark dataset demonstrate that MOVE is effective in DTI prediction.
Collapse
Affiliation(s)
- Chengxin He
- School of Computer Science, Sichuan University, Chengdu 610065, China; Med-X Center for Informatics, Sichuan University, Chengdu 610065, China
| | - Yuening Qu
- School of Computer Science, Sichuan University, Chengdu 610065, China
| | - Jin Yin
- The West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhenjiang Zhao
- School of Computer Science, Sichuan University, Chengdu 610065, China
| | - Runze Ma
- School of Computer Science, Sichuan University, Chengdu 610065, China
| | - Lei Duan
- School of Computer Science, Sichuan University, Chengdu 610065, China; Med-X Center for Informatics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Xuan P, Xu K, Cui H, Nakaguchi T, Zhang T. Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects. Front Pharmacol 2023; 14:1257842. [PMID: 37731739 PMCID: PMC10507253 DOI: 10.3389/fphar.2023.1257842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Background: Inferring drug-related side effects is beneficial for reducing drug development cost and time. Current computational prediction methods have concentrated on graph reasoning over heterogeneous graphs comprising the drug and side effect nodes. However, the various topologies and node attributes within multiple drug-side effect heterogeneous graphs have not been completely exploited. Methods: We proposed a new drug-side effect association prediction method, GGSC, to deeply integrate the diverse topologies and attributes from multiple heterogeneous graphs and the self-calibration attributes of each drug-side effect node pair. First, we created two heterogeneous graphs comprising the drug and side effect nodes and their related similarity and association connections. Since each heterogeneous graph has its specific topology and node attributes, a node feature learning strategy was designed and the learning for each graph was enhanced from a graph generative and adversarial perspective. We constructed a generator based on a graph convolutional autoencoder to encode the topological structure and node attributes from the whole heterogeneous graph and then generate the node features embedding the graph topology. A discriminator based on multilayer perceptron was designed to distinguish the generated topological features from the original ones. We also designed representation-level attention to discriminate the contributions of topological representations from multiple heterogeneous graphs and adaptively fused them. Finally, we constructed a self-calibration module based on convolutional neural networks to guide pairwise attribute learning through the features of the small latent space. Results: The comparison experiment results showed that GGSC had higher prediction performance than several state-of-the-art prediction methods. The ablation experiments demonstrated the effectiveness of topological enhancement learning, representation-level attention, and self-calibrated pairwise attribute learning. In addition, case studies over five drugs demonstrated GGSC's ability in discovering the potential drug-related side effect candidates. Conclusion: We proposed a drug-side effect association prediction method, and the method is beneficial for screening the reliable association candidates for the biologists to discover the actual associations.
Collapse
Affiliation(s)
- Ping Xuan
- Department of Computer Science, School of Engineering, Shantou University, Shantou, China
| | - Kai Xu
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VI, Australia
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Tiangang Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
- School of Mathematical Science, Heilongjiang University, Harbin, China
| |
Collapse
|
10
|
Teng S, Yin C, Wang Y, Chen X, Yan Z, Cui L, Wei L. MolFPG: Multi-level fingerprint-based Graph Transformer for accurate and robust drug toxicity prediction. Comput Biol Med 2023; 164:106904. [PMID: 37453376 DOI: 10.1016/j.compbiomed.2023.106904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 07/18/2023]
Abstract
Drug toxicity prediction is essential to drug development, which can help screen compounds with potential toxicity and reduce the cost and risk of animal experiments and clinical trials. However, traditional handcrafted feature-based and molecular-graph-based approaches are insufficient for molecular representation learning. To address the problem, we developed an innovative molecular fingerprint Graph Transformer framework (MolFPG) with a global-aware module for interpretable toxicity prediction. Our approach encodes compounds using multiple molecular fingerprinting techniques and integrates Graph Transformer-based molecular representation for feature learning and toxic prediction. Experimental results show that our proposed approach has high accuracy and reliability in predicting drug toxicity. In addition, we explored the relationship between drug features and toxicity through an interpretive analysis approach, which improved the interpretability of the approach. Our results highlight the potential of Graph Transformers and multi-level fingerprints for accelerating the drug discovery process by reliably, effectively alarming drug safety. We believe that our study will provide vital support and reference for further development in the field of drug development and toxicity assessment.
Collapse
Affiliation(s)
- Saisai Teng
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Chenglin Yin
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Yu Wang
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | | | - Zhongmin Yan
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China.
| | - Lizhen Cui
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China.
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China.
| |
Collapse
|
11
|
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023; 11:microorganisms11010228. [PMID: 36677520 PMCID: PMC9860978 DOI: 10.3390/microorganisms11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.
Collapse
|
12
|
Wang H, Wang X, Li T, Lai D, Zhang YD. Adverse effect signature extraction and prediction for drugs treating COVID-19. Front Genet 2022; 13:1019940. [DOI: 10.3389/fgene.2022.1019940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Given the considerable cost of drug discovery, drug repurposing is becoming attractive as it can effectively shorten the development timeline and reduce the development cost. However, most existing drug-repurposing methods omitted the heterogeneous health conditions of different COVID-19 patients. In this study, we evaluated the adverse effect (AE) profiles of 106 COVID-19 drugs. We extracted four AE signatures to characterize the AE distribution of 106 COVID-19 drugs by non-negative matrix factorization (NMF). By integrating the information from four distinct databases (AE, bioassay, chemical structure, and gene expression information), we predicted the AE profiles of 91 drugs with inadequate AE feedback. For each of the drug clusters, discriminant genes accounting for mechanisms of different AE signatures were identified by sparse linear discriminant analysis. Our findings can be divided into three parts. First, drugs abundant with AE-signature 1 (for example, remdesivir) should be taken with caution for patients with poor liver, renal, or cardiac functions, where the functional genes accumulate in the RHO GTPases Activate NADPH Oxidases pathway. Second, drugs featuring AE-signature 2 (for example, hydroxychloroquine) are unsuitable for patients with vascular disorders, with relevant genes enriched in signal transduction pathways. Third, drugs characterized by AE signatures 3 and 4 have relatively mild AEs. Our study showed that NMF and network-based frameworks contribute to more precise drug recommendations.
Collapse
|
13
|
Alpay BA, Gosink M, Aguiar D. Evaluating molecular fingerprint-based models of drug side effects against a statistical control. Drug Discov Today 2022; 27:103364. [PMID: 36115633 DOI: 10.1016/j.drudis.2022.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
There are many machine learning models that use molecular fingerprints of drugs to predict side effects. Characterizing their skill is necessary for understanding their usefulness in pharmaceutical development. Here, we analyze a statistical control of side effect prediction skill, develop a pipeline for benchmarking models, and evaluate how well existing models predict side effects identified in pharmaceutical documentation. We demonstrate that molecular fingerprints are useful for ranking drugs by their likelihood to cause a given side effect. However, the predictions for one or more drugs overall benefit only marginally from molecular fingerprints when ranking the likelihoods of many possible side effects, and display at most modest overall skill at identifying the side effects that do and do not occur.
Collapse
Affiliation(s)
- Berk A Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA 02138, USA.
| | | | - Derek Aguiar
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Xuan P, Wang M, Liu Y, Wang D, Zhang T, Nakaguchi T. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction. Brief Bioinform 2022; 23:6573962. [PMID: 35470853 DOI: 10.1093/bib/bbac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Computerized methods for drug-related side effect identification can help reduce costs and speed up drug development. Multisource data about drug and side effects are widely used to predict potential drug-related side effects. Heterogeneous graphs are commonly used to associate multisourced data of drugs and side effects which can reflect similarities of the drugs from different perspectives. Effective integration and formulation of diverse similarities, however, are challenging. In addition, the specific topology of each heterogeneous graph and the common topology of multiple graphs are neglected. RESULTS We propose a drug-side effect association prediction model, GCRS, to encode and integrate specific topologies, common topologies and pairwise attributes of drugs and side effects. First, multiple drug-side effect heterogeneous graphs are constructed using various kinds of similarities and associations related to drugs and side effects. As each heterogeneous graph has its specific topology, we establish separate module based on graph convolutional autoencoder (GCA) to learn the particular topology representation of each drug node and each side effect node, respectively. Since multiple graphs reflect the complex relationships among the drug and side effect nodes and contain common topologies, we construct a module based on GCA with sharing parameters to learn the common topology representations of each node. Afterwards, we design an attention mechanism to obtain more informative topology representations at the representation level. Finally, multi-layer convolutional neural networks with attribute-level attention are constructed to deeply integrate the similarity and association attributes of a pair of drug-side effect nodes. Comprehensive experiments show that GCRS's prediction performance is superior to other comparing state-of-the-art methods for predicting drug-side effect associations. The recall rates in top-ranked candidates and case studies on five drugs further demonstrate GCRS's ability in discovering potential drug-related side effects. CONTACT zhang@hlju.edu.cn.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.,School of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| | - Meng Wang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Yong Liu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Dong Wang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
15
|
Circadian and Immunity Cycle Talk in Cancer Destination: From Biological Aspects to In Silico Analysis. Cancers (Basel) 2022; 14:cancers14061578. [PMID: 35326729 PMCID: PMC8945968 DOI: 10.3390/cancers14061578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The circadian cycle is a natural cycle of the body repeated every 24 h, based on a day and night rhythm, and it affects many body processes. The present article reviews the importance and role of the circadian cycle in cancer and its association with the immune system and immunotherapy drugs at the cellular and molecular levels. It also examines the genes and cellular pathways involved in both circadian and immune systems. It offers possible computational solutions to increase the effectiveness of cancer treatment concerning the circadian cycle. Abstract Cancer is the leading cause of death and a major problem to increasing life expectancy worldwide. In recent years, various approaches such as surgery, chemotherapy, radiation, targeted therapies, and the newest pillar, immunotherapy, have been developed to treat cancer. Among key factors impacting the effectiveness of treatment, the administration of drugs based on the circadian rhythm in a person and within individuals can significantly elevate drug efficacy, reduce adverse effects, and prevent drug resistance. Circadian clocks also affect various physiological processes such as the sleep cycle, body temperature cycle, digestive and cardiovascular processes, and endocrine and immune systems. In recent years, to achieve precision patterns for drug administration using computational methods, the interaction of the effects of drugs and their cellular pathways has been considered more seriously. Integrated data-derived pathological images and genomics, transcriptomics, and proteomics analyses have provided an understanding of the molecular basis of cancer and dramatically revealed interactions between circadian and immunity cycles. Here, we describe crosstalk between the circadian cycle signaling pathway and immunity cycle in cancer and discuss how tumor microenvironment affects the influence on treatment process based on individuals’ genetic differences. Moreover, we highlight recent advances in computational modeling that pave the way for personalized immune chronotherapy.
Collapse
|
16
|
Zhao H, Zheng K, Li Y, Wang J. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data. Brief Bioinform 2021; 22:6312959. [PMID: 34213525 DOI: 10.1093/bib/bbab239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the frequencies of the drug-side effects is a very important issue in pharmacological studies and drug risk-benefit. However, designing clinical trials to determine the frequencies is usually time consuming and expensive, and most existing methods can only predict the drug-side effect existence or associations, not their frequencies. Inspired by the recent progress of graph neural networks in the recommended system, we develop a novel prediction model for drug-side effect frequencies, using a graph attention network to integrate three different types of features, including the similarity information, known drug-side effect frequency information and word embeddings. In comparison, the few available studies focusing on frequency prediction use only the known drug-side effect frequency scores. One novel approach used in this work first decomposes the feature types in drug-side effect graph to extract different view representation vectors based on three different type features, and then recombines these latent view vectors automatically to obtain unified embeddings for prediction. The proposed method demonstrates high effectiveness in 10-fold cross-validation. The computational results show that the proposed method achieves the best performance in the benchmark dataset, outperforming the state-of-the-art matrix decomposition model. In addition, some ablation experiments and visual analyses are also supplied to illustrate the usefulness of our method for the prediction of the drug-side effect frequencies. The codes of MGPred are available at https://github.com/zhc940702/MGPred and https://zenodo.org/record/4449613.
Collapse
Affiliation(s)
- Haochen Zhao
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Kai Zheng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0001, United States
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Kaur H, Kalia M, Singh V, Modgil V, Mohan B, Taneja N. In silico identification and characterization of promising drug targets in highly virulent uropathogenic Escherichia coli strain CFT073 by protein-protein interaction network analysis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
18
|
Khan MT, Mahmud A, Iqbal A, Hoque SF, Hasan M. Subtractive genomics approach towards the identification of novel therapeutic targets against human Bartonella bacilliformis. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|