1
|
Sari S, Önder S, Akkaya D, Sabuncuoğlu S, Zengin M, Barut B, Karakurt A. Azole derivatives inhibit wildtype butyrylcholinesterase and its common mutants. Drug Dev Res 2023; 84:1018-1028. [PMID: 37154110 DOI: 10.1002/ddr.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Azoles, which have been used for antifungal chemotherapy for decades, have recently been of interest for their efficacy against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). There is little known about the potential of azoles against BChE, however there is none regarding their inhibitory effects against mutants of BChE. In the current study, an azole library of 1-aryl-2-(1H-imidazol-1-yl)ethanol/ethanone oxime esters were tested against AChE and BChE, which yielded derivates more potent than the positive control, galantamine, against both isoforms. Kinetic analyses were performed for wildtype and mutant (A328F and A328Y) inhibition for the two most potent BChE inhibitors, pivalic and 3-bezoylpropanoic acid esters of 2-(1H-imidazol-1-yl)-1-(2-naphthyl)ethanol, which were found to have great affinity to the wildtype and mutant BChE types with Ki values as low as 0.173 ± 0.012 µM. The compounds were identified to show linear competitive or mixed type inhibition. Molecular modeling confirmed these kinetic data and provided further insights regarding molecular basis of BChE inhibition by the active derivatives. Thus, current study suggests new azole derivatives with promising cholinesterase inhibitory effects and reveals the first set of information to promote our understanding for the inhibitory behavior of this class against the mutant BChE forms.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Seda Önder
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Akkaya
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| |
Collapse
|
2
|
Wang Z, Li J, Liu Y, Chen Q, Zhang P, Wu J. Direct a-C(sp3)-H thioetheration/selenylation of nafimidone derivatives enabled by electrocatalysis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Marcinkowska M, Mordyl B, Fajkis-Zajaczkowska N, Siwek A, Karcz T, Gawalska A, Bucki A, Żmudzki P, Partyka A, Jastrzębska-Więsek M, Pomierny B, Walczak M, Smolik M, Pytka K, Mika K, Kotańska M, Kolaczkowski M. Hybrid molecules combining GABA-A and serotonin 5-HT 6 receptors activity designed to tackle neuroinflammation associated with depression. Eur J Med Chem 2023; 247:115071. [PMID: 36603509 DOI: 10.1016/j.ejmech.2022.115071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
There is clear evidence that the presence of inflammatory factors and impaired GABA-ergic neurotransmission in depressed patients is associated with poor clinical outcome. We designed hybrid molecules, bearing the GABA molecule assembled with chemical fragments that interact with the serotonin 5-HT6 receptor. Such a combination aimed to curb neuroinflammation, remodel GABA-ergic signaling, and provide antidepressant-like activity. The most promising hybrid 3B exerted nanomolar affinity for 5-HT6 receptors and exerted agonistic properties on GABA-A receptors. Developability studies conferred that 3B exerted favorable drug-like properties and optimal brain penetration. In in vivo studies, 3B exerted robust antidepressant-like activity and proved to be highly effective in reducing levels of oxidative stress markers and the pro-inflammatory cytokine IL-6. The inetersting pharmacological profile of 3B makes it a promising candidate for further development for depression associated with neuroinflammation.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Barbara Mordyl
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | | | - Agata Siwek
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Alicja Gawalska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Adam Bucki
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Paweł Żmudzki
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | | | - Bartosz Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Maria Walczak
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Magdalena Smolik
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Karolina Pytka
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Kamil Mika
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Magdalena Kotańska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Marcin Kolaczkowski
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza St., 05-152, Czosnów, Poland
| |
Collapse
|
5
|
Sari S, Akkaya D, Zengin M, Sabuncuoğlu S, Özdemir Z, Alagöz MA, Karakurt A, Barut B. Antifungal Azole Derivatives Featuring Naphthalene Prove Potent and Competitive Cholinesterase Inhibitors with Potential CNS Penetration According to the in Vitro and in Silico Studies. Chem Biodivers 2022; 19:e202200027. [PMID: 35695705 DOI: 10.1002/cbdv.202200027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Cholinesterase inhibition is of great importance in the fight against neurodegenerative disorders such as Alzheimer's disease. Azole antifungals have come under the spotlight with recent discoveries that underline the efficacy and potential of miconazole and its derivatives against cholinesterase enzymes. In this study, we evaluated a library of azoles against acetylcholinesterase and butyrylcholinesterase using in vitro and in silico methods to identify potent inhibitors. Low micromolar IC50 values were obtained for imidazole derivatives, which were further tested and found potent competitive cholinesterase inhibitors via enzyme kinetics study. The active derivatives showed negligible toxicity in in vitro cytotoxicity tests. Molecular modeling studies predicted that these derivatives were druglike, could penetrate blood-brain barrier, and tightly bind to cholinesterase active site making key interactions via the imidazole moiety at protonated state. Thus, current study identifies potent and competitive cholinesterase inhibitor azoles with minor toxicity and potential to pass into the central nervous system.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Didem Akkaya
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, 44280, Malatya, Turkey
| | - M Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, 44280, Malatya, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, 44280, Malatya, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|