1
|
Weng J, Weng S, Xu J, Liu D, Guo R, Shi B, Chen M. Tocilizumab alleviated lipopolysaccharide-induced acute lung injury by improving PI3K/AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03786-9. [PMID: 39797985 DOI: 10.1007/s00210-025-03786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction. Lung damage was assessed by hematoxylin-eosin (H&E) staining, alongside measurements of respiratory function, including PaO2/Fio2 ratios, lung edema, airway resistance, and lung compliance. Western blotting analyzed the expression of phosphorylated PI3K and AKT (P-PI3K, P-AKT), while ELISA quantified levels of TNF-α, IL-1β, IL-6, and oxidative stress markers. Apoptosis was evaluated using the TUNEL assay, and key apoptotic proteins (Bcl-2, Bax, and caspase-3) were measured by Western blotting. The Cell Counting Kit-8 (CCK-8) assay was employed to determine cell viability. The LPS-induced model exhibited decreased P-PI3K and P-AKT levels, while TZ treatment significantly elevated these markers. TZ also reduced lung tissue damage, improved respiratory function, and decreased inflammation, oxidative stress, and apoptosis. However, co-administration with LY294002 (a PI3K inhibitor) blocked these benefits, reversing the protective effects of TZ. TZ alleviates lung injury and improves outcomes in LPS-induced ALI by enhancing the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junting Weng
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Shuoyun Weng
- Wenzhou Medical University School of Optometry and Ophthalmology, Wenzhou, 325035, China
| | - Jitao Xu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Danjuan Liu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Rongjie Guo
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Bingbing Shi
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Min Chen
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China.
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, China.
| |
Collapse
|
2
|
Han NR, Park HJ, Ko SG, Moon PD. Naringenin, a Food Bioactive Compound, Reduces Oncostatin M Through Blockade of PI3K/Akt/NF-κB Signal Pathway in Neutrophil-like Differentiated HL-60 Cells. Foods 2025; 14:102. [PMID: 39796391 PMCID: PMC11719654 DOI: 10.3390/foods14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells. To assess the modulatory effect of NAR, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assay were employed. While exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) induced elevated OSM release and mRNA expression, the elevated OSM release and mRNA expression were diminished by the addition of NAR in dHL-60 cells. While the phosphorylation of phosphatidylinositol 3-kinase, protein kinase B (Akt), and nuclear factor (NF)-κB was upregulated by exposure to GM-CSF, the upregulated phosphorylation was inhibited by the addition of NAR in dHL-60 cells. Consequently, the results indicate that the food bioactive compound NAR may have a positive effect on health (in health promotion and improvement) or may play a role in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Zhao Q, Kong C, Wu X, Ling Y, Shi J, Li S, Zhu Y, Yu J. Ciprofol prevents ferroptosis in LPS induced acute lung injury by activating the Nrf2 signaling pathway. BMC Pulm Med 2024; 24:591. [PMID: 39609781 PMCID: PMC11606060 DOI: 10.1186/s12890-024-03415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Patients who suffered from sepsis-induced acute lung injury (ALI) always need sedation for mechanical ventilation in intensive care unit (ICU). Ciprofol(Cip), a novel intravenous anesthetic, was revealed to have anti-inflammatory and antioxidative properties. Ferroptosis, categorized as a type of newly non-apoptotic cell death, participates in the development of lung injury. This study aimed to identify the effect of ciprofol on sepsis-induced ALI and to determine whether ferroptosis is involved. METHODS AND RESULTS To create ALI models, MLE12 alveolar epithelial. Cells and lipopolysaccharide (LPS)-stimulated C57BL/6J mice were used. Our results displyed that Cip reduced lung injury and ferroptosis. In the LPS-induced sepsis mice model, Cip pretreatment partially reduced respiratory system damage, as evaluated by HE, TUNEL and inflammatory factors. By raising GSH levels, ciprofol activated the Nrf2 antioxidative pathway, blocked ferroptosis, increased ferroptosis-related protein (GPX4 and SLC7A11) expressions, and reduced Fe2+ content, as well as MDA and 4-HNE levels. However, the protective effects of Cip on lung injury and ferroptosis diminished in Nrf2-KO mice. Additionally, Cip activated the Nrf2 pathway and reduced cell death by preventing detrimental lipid peroxidation and ferroptosis in vitro. However, these effects were not observed in siNrf2-treated cells. CONCLUSION Our study demonstrated that Cip may prevent septic lung injury by suppressing ferroptosis through the Nrf2 pathway.
Collapse
Affiliation(s)
- Qin Zhao
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Chang Kong
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Xiuyun Wu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia Shi
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianbo Yu
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China.
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China.
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Changjiang street, Nankai district, Tianjin, 300000, China.
| |
Collapse
|
4
|
Li N, Yi Y, Chen J, Huang Y, Peng J, Li Z, Wang Y, Zhang J, Xu C, Liu H, Li J, Liu X. Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. Int J Mol Med 2024; 54:63. [PMID: 38874017 PMCID: PMC11188976 DOI: 10.3892/ijmm.2024.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yang Yi
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jun Chen
- Emergency Department of Danzhou People's Hospital, Danzhou, Hainan 571799, P.R. China
| | - Yue Huang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jichao Peng
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhao Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Ying Wang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiadong Zhang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chaoqun Xu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Haoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinghua Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
5
|
Zhang H, Liu D, Xu QF, Wei J, Zhao Y, Xu DF, Wang Y, Liu YJ, Zhu XY, Jiang L. Endothelial RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury. Int J Biol Macromol 2024; 269:131805. [PMID: 38677673 DOI: 10.1016/j.ijbiomac.2024.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for β-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Qing-Feng Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Juan Wei
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Ying Zhao
- Department of Anesthesiology, Zhejiang Cancer Hospital, 310022, PR China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, PR China.
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Li N, Huang Y, Yi Y, Qian J, Li Q, Xu SQ, Wang HF, Wu XX, Peng JC, Li LH, Yao JJ, Liu XR. Analysis of abnormal expression of signaling pathways in PQ-induced acute lung injury in SD rats based on RNA-seq technology. Inhal Toxicol 2024; 36:1-12. [PMID: 38175690 DOI: 10.1080/08958378.2023.2300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Background: Paraquat (PQ) plays an important role in agricultural production due to its highly effective herbicidal effect. However, it has led to multiple organ failure in those who have been poisoned, with damage most notable in the lungs and ultimately leading to death. Because of little research has been performed at the genetic level, and therefore, the specific genetic changes caused by PQ exposure are unclear.Methods: Paraquat poisoning model was constructed in Sprague Dawley (SD) rats, and SD rats were randomly divided into Control group, paraquat (PQ) poisoning group and Anthrahydroquinone-2,6-disulfonate (AH2QDS) treatment group. Then, the data was screened and quality controlled, compared with reference genes, optimized gene structure, enriched at the gene expression level, and finally, signal pathways with significantly different gene enrichment were screened.Results: This review reports on lung tissues from paraquat-intoxicated Sprague Dawley (SD) rats that were subjected to RNA-seq, the differentially expressed genes were mainly enriched in PI3K-AKT, cGMP-PKG, MAPK, Focal adhesion and other signaling pathways.Conclusion: The signaling pathways enriched with these differentially expressed genes are summarized, and the important mechanisms mediated through these pathways in acute lung injury during paraquat poisoning are outlined to identify important targets for AH2QDS treatment of acute lung injury due to paraquat exposure, information that will be used to support a subsequent in-depth study on the mechanism of PQ action.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Yue Huang
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Yang Yi
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Jin Qian
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Qi Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Shuang-Qin Xu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Hang-Fei Wang
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Xin-Xin Wu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ji-Chao Peng
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Hua Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin-Jian Yao
- Emergency Department, Hainan General Hospital, Affiliated to Hainan Medical University, Haikou, China
| | - Xiao-Ran Liu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Jia D, Huan Z, Han J, Xu C, Sui L, Ge X. HSF1 enhances the attenuation of exosomes from mesenchymal stem cells to hemorrhagic shock induced lung injury by altering the protein profile of exosomes. Int Immunopharmacol 2023; 123:110693. [PMID: 37506505 DOI: 10.1016/j.intimp.2023.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Severe hemorrhagic shock (HS) leads to lung injury, resulting in respiratory insufficiency. Mesenchymal stem cell (MSC)-derived exosomes have therapeutic effects on the organ injury. HSF1 has been reported to protect the lung against injury. In this study, the role of exosomes from HSF1-overexpressed MSCs (HSF1-EVs) in HS-induced lung injury was investigated. We constructed a mouse model of lung injury by induction with HS and pre-treated it with HSF1-EVs. It was clarified that HSF1-EVs manifested better protective effects on HS-induced lung injury compared with the exosomes derived from control MSCs. Inhalation of HSF1-EVs declined the ratio of wet to dry and total protein concentration in bronchoalveolar lavage fluids. Besides, HSF1-EVs greatly inhibited the production of inflammatory cytokines (IL-1β, IL-6, MCP-1 and HMGB1), and constrained the pulmonary neutrophilic infiltration induced by HS. A reduction of oxidative stress was observed in HSF1-EV-treated mice. HSF1-EVs suppressed the HS-induced apoptosis of lung cell and downregulated Bcl-2 expression, while promoting Bax expression. The key proteins of pulmonary epithelial barrier, E-cadherin, ZO-1 and Occludin, were all upregulated in HS-treated mice after HSF1-EV inhalation, suggesting that HSF1-EVs played a protective role in the epithelial barrier of lung. Additionally, the results of proteomics showed that HSF1 overexpression altered the protein profile of MSC-derived exosomes, which might explain the more significant relief effect of HSF1-EVs on lung injury compared with that of Plasmid-EVs. These new findings demonstrated that the exosomes secreted by HSF1-overexpressed MSCs can be an effective precautionary measure for lung injury induced by HS.
Collapse
Affiliation(s)
- Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Lijun Sui
- Department of Cardiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
8
|
Hydrogen Sulfide Downregulates Oncostatin M Expression via PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Antioxidants (Basel) 2023; 12:antiox12020417. [PMID: 36829975 PMCID: PMC9952767 DOI: 10.3390/antiox12020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The cytokine oncostatin M (OSM) is regarded as a critical mediator in various inflammatory responses. While the gaseous signaling molecule hydrogen sulfide (H2S) plays a role in a variety of pathophysiological conditions, such as hypertension, inflammatory pain, osteoarthritis, ischemic stroke, oxidative stress, retinal degeneration, and inflammatory responses, the underlying mechanism of H2S action on OSM expression in neutrophils needs to be clarified. In this work, we studied how H2S reduces OSM expression in neutrophil-like differentiated (d)HL-60 cells. To evaluate the effects of H2S, sodium hydrosulfide (NaHS, a donor that produces H2S), ELISA, real-time PCR (qPCR), immunoblotting, and immunofluorescence staining were utilized. Although exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in upregulated levels of production and mRNA expression of OSM, these upregulated levels were reduced by pretreatment with NaHS in dHL-60 cells. Similarly, the same pretreatment lowered phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB that had been elevated by stimulation with GM-CSF. Overall, our results indicated that H2S could be a therapeutic agent for inflammatory disorders via suppression of OSM.
Collapse
|
9
|
Weng J, Liu D, Shi B, Chen M, Weng S, Guo R, Fu C. Penehyclidine hydrochloride protects against lipopolysaccharide-induced acute lung injury by promoting the PI3K/Akt pathway. Int J Immunopathol Pharmacol 2023; 37:3946320231192175. [PMID: 37500500 PMCID: PMC10655789 DOI: 10.1177/03946320231192175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) attracted attention among physicians because of its high mortality. We aimed to determine whether the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved in the protective effects of penehyclidine hydrochloride (PHC) against lipopolysaccharide (LPS)-induced ALI. METHODS H&E staining was used to observed pathological changes in the lung tissues. ELISA was used to evaluate the concentration of inflammatory mediators in the bronchoalveolar lavage fluid (BALF). White-light microscopy was performed to observe the TUNEL-positive nuclei. The viability of NR8383 alveolar macrophages was determined by using CCK-8. The levels of MPO, MDA, SOD, and GSH-Px were analyzed using ELISA kits. Western blotting was used to evaluate the ERS-associated protein levels and the phosphorylation of PI3K and Akt. RESULTS PHC administration defended against LPS-induced histopathological deterioration and increased pulmonary edema and lung injury scores, while all of these beneficial effects were inhibited by LY. In addition, PHC administration mitigated oxidative stress as indicated by decreases in lung myeloperoxidase (MPO) and malondialdehyde (MDA) concentrations, and increases in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations. It also alleviated LPS-induced inflammation. PHC administration attenuated apoptosis-associated protein levels, improved cell viability, and decreased the number of TdT-mediated dUTP Nick-End Labeling (TUNEL)-positive cells. Furthermore, PHC inhibited ERS-associated protein levels. Meanwhile, the protection of PHC against inflammation, oxidative stress, apoptosis, and ERS was inhibited by LY. Moreover, PHC administration increased PI3K and Akt phosphorylation, indicating that the upregulation of the PI3K/Akt pathway, while this pathway was inhibited by LY. CONCLUSION PHC significantly activates the PI3K/Akt pathway to ameliorate the extent of damage to pulmonary tissue, inflammation, oxidative stress, apoptosis, and ERS in LPS-induced ALI.
Collapse
Affiliation(s)
- Junting Weng
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Danjuan Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Min Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Shuoyun Weng
- School of Wenzhou Medical University, Wenzhou, China
| | - Rongjie Guo
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Chunjin Fu
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
10
|
Zhang X, Bai Y, Zhu W, Lv X, Pei W. ApoM regulates PFKL through the transcription factor SREBF1 to inhibit the proliferation, migration and metastasis of liver cancer cells. Oncol Lett 2022; 24:210. [PMID: 35720503 PMCID: PMC9178675 DOI: 10.3892/ol.2022.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Yaping Bai
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenhao Zhu
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xinyue Lv
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
11
|
Zou G, Zhu Q, Ren B, Guo Q, Wu Y, He J, Wu Y, Luo Z. HDL-Associated Lipoproteins: Potential Prognostic Biomarkers for Gram-Negative Sepsis. J Inflamm Res 2022; 15:1117-1131. [PMID: 35210815 PMCID: PMC8860992 DOI: 10.2147/jir.s350737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To determine the levels of serum HDL-associated apolipoproteins (apoM and apoC) and HDL-binding receptor (scavenger receptor BI, SR-BI) in patients with gram-negative bacteria sepsis (G-sepsis) and to evaluate the value of lipoproteins in the diagnosis, severity and prognosis of G-sepsis. Patients and Methods A total of 128 patients with sepsis, 40 patients with system inflammatory reaction syndrome (SIRS) and 40 healthy subjects were enrolled in the Second People’s Hospital of Hunan Province from September 2019 to September 2020. The levels and the correlation of lipoproteins were detected and dynamically monitored by enzyme-linked adsorption method, ROC curve for the diagnostic, severity and prognostic value of lipoproteins in G-sepsis. Results The levels of serum HDL-associated lipoproteins in patients with G-sepsis were significantly decreased (P < 0.05), and the ROC curve showed that HDL-C, SR-BI, apoM and apoC had cut-off values of 0.915 mmol/L, 122.100 pg/mL, 102.400 ug/mL and 17.55 mg/mL, respectively, for the diagnosis of G-sepsis, with the sensitivity was 85.56%, 97.78%, 93.33% and 73.03%, and the specificity was 95.0%, 82.50%, 61.54% and 82.50%, respectively. There was a correlation between HDL-associated apolipoproteins. Changes in serum HDL-associated lipoproteins were more obvious in shock group than classic inflammation indicators, such as PCT, IL-6 and CRP. They showed a trend change on day 3, with the levels of SR-BI and apoC changing 2–3 times, and the sensitivity of HDL-C, SR-BI, apoM and apoC for the diagnosis of G-septic shock were 32.43%, 72.97%, 65.75%, and 43.24%, and specificity of 94.34%, 81.13%, 83.07%, and 86.79%, respectively. The AUC, sensitivity and specificity of apoM combined with SR-BI were improved. Conclusion HDL-associated lipoproteins were correlated with bacterial-infected types, and serum levels of HDL-associated lipoproteins can be used as potential biomarkers for early diagnosis and progress of G-sepsis. ApoM combined with SR-BI could improve the sensitivity and specificity of prognosis assessment.
Collapse
Affiliation(s)
- Guoying Zou
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Qing Zhu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Biqiong Ren
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Qi Guo
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Yuanyuan Wu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Junyu He
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Ying Wu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Zhihong Luo
- Office of the Party Committee, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
- Correspondence: Zhihong Luo, Office of the Party Committee, The Second People’s Hospital of Hunan Province, Furong Middle Road 427, Yuhua District, Changsha, Hunan, 410007, People’s Republic of China, Tel +86 19848029533, Email
| |
Collapse
|
12
|
Ursolic Acid Suppresses Oncostatin M Expression through Blockade of PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cytokine oncostatin M (OSM) plays an important role in a variety of inflammatory reactions and is mainly produced in neutrophils in inflammatory diseases. While natural pentacyclic triterpenoid ursolic acid (UA) possesses a wide range of beneficial effects, such as anti-oxidant, anti-tumor, and anti-inflammatory, the regulatory processes of OSM suppression by UA in neutrophils are still poorly understood. This study was aimed at examining how UA regulates OSM expression in neutrophil-like differentiated (d)HL-60 cells. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and immunoblotting were employed to analyze the effects of UA. Whereas stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF) led to elevations of OSM production and mRNA expression, these elevations were lowered by treatment with UA in neutrophil-like dHL-60 cells. When the cells were exposed to GM-CSF, phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB were upregulated. However, the upregulations were diminished by treatment with UA in neutrophil-like dHL-60 cells. The results of this study proposed that UA might relieve inflammatory diseases via inhibition of OSM.
Collapse
|
13
|
Han NR, Park HJ, Moon PD. Resveratrol Downregulates Granulocyte-Macrophage Colony-Stimulating Factor-Induced Oncostatin M Production through Blocking of PI3K/Akt/NF-κB Signal Cascade in Neutrophil-like Differentiated HL-60 Cells. Curr Issues Mol Biol 2022; 44:541-549. [PMID: 35723323 PMCID: PMC8928961 DOI: 10.3390/cimb44020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Oncostatin M (OSM) is essential in a wide range of inflammatory responses, and most OSM is produced by neutrophils in respiratory diseases. While resveratrol (RES) is regarded as an anti-inflammatory agent in a variety of conditions, the mechanism of OSM inhibition by RES in neutrophils remains to be elucidated. In this study, we investigated whether RES could inhibit OSM production in neutrophil-like differentiated (d)HL-60 cells. The effects of RES were measured by means of an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Increases in production and mRNA expression of OSM resulted from the addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) in neutrophil-like dHL-60 cells; however, these increases were downregulated by RES treatment. Exposure to GM-CSF led to elevations of phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-kB. Treatment with RES induced downregulation of the phosphorylated levels of PI3K, Akt, and NF-κB in neutrophil-like dHL-60 cells. These results suggest that RES could be applicable to prevent and/or treat inflammatory disorders through blockade of OSM.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0897
| |
Collapse
|
14
|
Zhang S, Tang C, Wang X. Octreotide activates autophagy to alleviate lipopolysaccharide-induced human pulmonary epithelial cell injury by inhibiting the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Bioengineered 2021; 13:217-226. [PMID: 34898367 PMCID: PMC8805934 DOI: 10.1080/21655979.2021.2012908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Octreotide is a synthetic octapeptide of natural somatostatin. We aimed to investigate the influence of Octreotide on lipopolysaccharide (LPS)-stimulated human pulmonary epithelial cell damage. After stimulated by LPS, BEAS-2B cells were treated with various concentrations of Octreotide. CCK-8 assay and LDH kits were to evaluate cell cytotoxicity. ELISA kits were to analyze the levels of inflammatory factors. TUNEL staining was to measure cell apoptosis. Western blot assay was used to assess the expression of apoptosis-related proteins, autophagy-related proteins and AKT/mTOR signaling-related proteins. Then, 3-methyladenine (3-MA) was adopted for treating BEAS-2B cells to determine its effects on inflammation and apoptosis. Afterward, adding AKT agonist (SC79) or mTOR antagonist (rapamycin) to explore the impact of Octreotide on autophagy. Results revealed that Octreotide notably enhanced cell viability and reduced LDH activity. The levels of inflammatory factors were significantly decreased following Octreotide treatment. Additionally, Octreotide attenuated the apoptotic capacity of LPS-induced BEAS-2B cells, led to the up-regulation of Bcl-2 protein level while cut down the protein levels of Bax and cleaved caspase3. Remarkably, the expression of autophagy-related protein LC3II/I and Beclin1 was elevated after Octreotide administration. Importantly, the suppressive effects of Octreotide on the inflammation and apoptosis of LPS-induced BEAS-2B cells was abrogated by 3-MA. Further experiments suggested that Octreotide downregulated p-AKT and mTOR expression in LPS-stimulated BEAS-2B cells. SC79 addition inhibited autophagy, evidenced by downregulated LC3II/I and Beclin1 expression while rapamycin presented the opposite effects. To conclude, Octreotide activates autophagy to alleviate LPS-induced pulmonary epithelial cell injury by inhibiting the AKT/mTOR signaling.
Collapse
Affiliation(s)
- Sumian Zhang
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cijun Tang
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebin Wang
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|