1
|
Binjubair FA, Almansour BS, Ziedan NI, Abdel-Aziz AAM, Al-Rashood ST, Elgohary MK, Elkotamy MS, Abdel-Aziz HA. Molecular docking, DFT and antiproliferative properties of 4-(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine as potent anticancer agent with CDK2 and PIM1 inhibition potency. Drug Dev Res 2024; 85:e70009. [PMID: 39467111 DOI: 10.1002/ddr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Due to the limited effeteness and safety concerns associated with current cancer treatments, there is a pressing need to develop novel therapeutic agents. 4-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (3) was synthesized and Initially screened on 59 cancer cell lines showed promising anticancer activity, so, it was chosen for a 5-dose experiment by the NCI/USA. The GI50 values ranged from 1.04 to 8.02 μM on the entire nine panels (57 cell lines), with a GI50 of 2.70 μM for (MG-MID) panel, indicating an encouraging action. To further explore the molecular attributes of compound 3, we optimized its structure using DFT with the B3LYP/6-31 + + G(d,p) basis set. We have considered vibrational analysis, bond lengths and angles, FMOs, and MEP for the structure. Additionally, pharmacokinetic assessments were conducted using various in-silico platforms to evaluate the compound safety. A molecular modeling study created a kinase profile on 44 different kinases. This allowed us to study our compound's binding affinity to these kinases and compare it to the co-crystallized one. Our findings revealed compound 3 exhibited better binding for half of the tested kinases, suggesting its potential as a multi-kinase inhibitor. To further validate our computational results, we tested compound 3 for its inhibitory effects on CDK2 and PIM1. Compound 3 exhibited an IC50 of 0.30 µM for CDK2 inhibition, making it five times less active than Roscovitine, which has an IC50 of 0.06 µM. However, compound 3 demonstrated slightly better inhibition of PIM1 compared to Staurosporine. These findings suggest that compound 3 is a promising anticancer agent with the potential for further development into a highly active compound.
Collapse
Affiliation(s)
- Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Basma S Almansour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Noha I Ziedan
- Department of physical, mathematical and Engineering science, Faculty of science, Business and Enterprise, University of Chester, Chester, UK
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, 11829, Cairo, Egypt
| | - Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, 11829, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, 12622, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria, 21648, Egypt
| |
Collapse
|
2
|
Hamed OA, Abou-Elmagd El-Sayed N, Mahmoud WR, F Elmasry G. Molecular docking approach for the design and synthesis of new pyrazolopyrimidine analogs of roscovitine as potential CDK2 inhibitors endowed with pronounced anticancer activity. Bioorg Chem 2024; 147:107413. [PMID: 38696844 DOI: 10.1016/j.bioorg.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.
Collapse
Affiliation(s)
- Ola Alaa Hamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Nehad Abou-Elmagd El-Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| |
Collapse
|
3
|
Ibrahim BT, Allam HA, El-Dydamony NM, Fouad MA, Mohammed ER. Exploring new quinazolin-4(3H)-one derivatives as CDK2 inhibitors: Design, synthesis, and anticancer evaluation. Drug Dev Res 2024; 85:e22163. [PMID: 38419305 DOI: 10.1002/ddr.22163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
In the present work, five series of new 2,3-disubstituted quinazolin-4(3H)-ones 4a-c, 5a-d, 6a-g, 7a,b, and 9a-c were designed, synthesized, and screened in vitro for their cytotoxic activity against 60 cancer cell lines by the National Cancer Institute, USA. Five candidates 4c, 6a, 6b, 6d, and 6g revealed promising cytotoxicity with significant percentage growth inhibition in the range of 81.98%-96.45% against the central nervous system (CNS) (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The in vitro cytotoxic half maximal inhibitory concentration (IC50 ) values for the most active compounds 4c, 6a, 6b, 6d, and 6g against the most sensitive cell lines were evaluated. Additionally, screening their cyclin-dependent kinase 2 (CDK2) inhibitory activity was performed. Ortho-chloro-benzylideneamino derivative 6b emerged as the most potent compound with IC50 = 0.67 µM compared to Roscovitine (IC50 = 0.64 µM). The most active candidates arrested the cell cycle at G1, S phases, or both, leading to cell death and inducing apoptosis against CNS (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The molecular docking study verified the resulting outcomes for the most active candidates in the CDK2-binding pocket. Finally, physicochemical, and pharmacokinetic properties deduced that compounds 4c, 6a, 6b, 6d, and 6g displayed significant drug-likeness properties. According to the obtained results, the newly targeted compounds are regarded as promising scaffolds for the continued development of novel CDK2 inhibitors.
Collapse
Affiliation(s)
- Basant T Ibrahim
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | | | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, New Giza University, Cairo, Egypt
| | - Eman R Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Zeng WB, Ji TY, Zhang YT, Ma YF, Li R, You WW, Zhao PL. Design, synthesis, and biological evaluation of N-(pyridin-3-yl)pyrimidin-4-amine analogues as novel cyclin-dependent kinase 2 inhibitors for cancer therapy. Bioorg Chem 2024; 143:107019. [PMID: 38096683 DOI: 10.1016/j.bioorg.2023.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024]
Abstract
The discovery and development of CDK2 inhibitors has currently been validated as a hot topic in cancer therapy. Herein, a series of novel N-(pyridin-3-yl)pyrimidin-4-amine derivatives were designed and synthesized as potent CDK2 inhibitors. Among them, the most promising compound 7l presented a broad antiproliferative efficacy toward diverse cancer cells MV4-11, HT-29, MCF-7, and HeLa with IC50 values of 0.83, 2.12, 3.12, and 8.61 μM, respectively, which were comparable to that of Palbociclib and AZD5438. Interestingly, these compounds were less toxic on normal embryonic kidney cells HEK293 with high selectivity index. Further mechanistic studies indicated 7l caused cell cycle arrest and apoptosis on HeLa cells in a concentration-dependent manner. Moreover, 7l manifested potent and similar CDK2/cyclin A2 nhibitory activity to AZD5438 with an IC50 of 64.42 nM. These findings revealed that 7l could serve as ahighly promisingscaffoldfor CDK2 inhibitors as potential anticancer agents and functional probes.
Collapse
Affiliation(s)
- Wen-Bin Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Tang-Yang Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yan-Ting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Feng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Rou Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|