1
|
Qin L, Wang H, Ning W, Cui M, Wang Q. New advances in the diagnosis and treatment of autism spectrum disorders. Eur J Med Res 2024; 29:322. [PMID: 38858682 PMCID: PMC11163702 DOI: 10.1186/s40001-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect individuals' social interactions, communication skills, and behavioral patterns, with significant individual differences and complex etiology. This article reviews the definition and characteristics of ASD, epidemiological profile, early research and diagnostic history, etiological studies, advances in diagnostic methods, therapeutic approaches and intervention strategies, social and educational integration, and future research directions. The highly heritable nature of ASD, the role of environmental factors, genetic-environmental interactions, and the need for individualized, integrated, and technology-driven treatment strategies are emphasized. Also discussed is the interaction of social policy with ASD research and the outlook for future research and treatment, including the promise of precision medicine and emerging biotechnology applications. The paper points out that despite the remarkable progress that has been made, there are still many challenges to the comprehensive understanding and effective treatment of ASD, and interdisciplinary and cross-cultural research and global collaboration are needed to further deepen the understanding of ASD and improve the quality of life of patients.
Collapse
Affiliation(s)
- Lei Qin
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Haijiao Wang
- Department of Intensive Care Medicine, Feicheng People's Hospital, Taian, Shandong, China
| | - Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China.
| |
Collapse
|
2
|
Mezinska S, Gallagher L, Verbrugge M, Bunnik EM. Ethical issues in genomics research on neurodevelopmental disorders: a critical interpretive review. Hum Genomics 2021; 15:16. [PMID: 33712057 PMCID: PMC7953558 DOI: 10.1186/s40246-021-00317-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background Genomic research on neurodevelopmental disorders (NDDs), particularly involving minors, combines and amplifies existing research ethics issues for biomedical research. We performed a review of the literature on the ethical issues associated with genomic research involving children affected by NDDs as an aid to researchers to better anticipate and address ethical concerns. Results Qualitative thematic analysis of the included articles revealed themes in three main areas: research design and ethics review, inclusion of research participants, and communication of research results. Ethical issues known to be associated with genomic research in general, such as privacy risks and informed consent/assent, seem especially pressing for NDD participants because of their potentially decreased cognitive abilities, increased vulnerability, and stigma associated with mental health problems. Additionally, there are informational risks: learning genetic information about NDD may have psychological and social impact, not only for the research participant but also for family members. However, there are potential benefits associated with research participation, too: by enrolling in research, the participants may access genetic testing and thus increase their chances of receiving a (genetic) diagnosis for their neurodevelopmental symptoms, prognostic or predictive information about disease progression or the risk of concurrent future disorders. Based on the results of our review, we developed an ethics checklist for genomic research involving children affected by NDDs. Conclusions In setting up and designing genomic research efforts in NDD, researchers should partner with communities of persons with NDDs. Particular attention should be paid to preventing disproportional burdens of research participation of children with NDDs and their siblings, parents and other family members. Researchers should carefully tailor the information and informed consent procedures to avoid therapeutic and diagnostic misconception in NDD research. To better anticipate and address ethical issues in specific NDD studies, we suggest researchers to use the ethics checklist for genomic research involving children affected by NDDs presented in this paper. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-021-00317-4.
Collapse
Affiliation(s)
- S Mezinska
- Faculty of Medicine and Institute of Clinical and Preventive Medicine, University of Latvia, Jelgavas Str.3, Riga, LV-1004, Latvia.
| | - L Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James Hospital, Dublin 8, Ireland
| | - M Verbrugge
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, PO Box 2400, Rotterdam, 3000, CA, The Netherlands
| | - E M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, PO Box 2400, Rotterdam, 3000, CA, The Netherlands
| |
Collapse
|
3
|
Factors Affecting Family Compliance with Genetic Testing of Children Diagnosed with Autism Spectrum Disorder. J Autism Dev Disord 2020; 51:1201-1209. [PMID: 32651724 DOI: 10.1007/s10803-020-04589-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is broad consensus about the importance of post-diagnostic genetic testing for children with ASD. However, the extent of compliance with these tests and the factors affecting compliance have rarely been examined. We surveyed a sample of 114 families with a child with ASD in Israel, where such genetic testing is funded by the government. We found that only one-third of these families completed post-diagnosis genetic testing for their child. The main factor influencing compliance was the doctor's recommendation (OR 11.6; 95% CI 3.2-42.4; p < 0.001). Furthermore, > 50% of the non-compliant families reported that genetic testing was irrelevant to them. Our findings highlight the importance of providing clear recommendations and explanations regarding the benefits and relevance of post-diagnosis genetic testing for children with ASD.
Collapse
|
4
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
5
|
Ziegler A, Rudolph-Rothfeld W, Vonthein R. Genetic Testing for Autism Spectrum Disorder is Lacking Evidence of Cost-effectiveness. A Systematic Review. Methods Inf Med 2017; 56:268-273. [PMID: 28220926 DOI: 10.3414/me16-01-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a highly heritable neural development disorder characterized by social impairment. The earlier the diagnosis is made, the higher are the chances of obtaining relief of symptoms. A very early diagnosis uses molecular genetic tests, which are also offered commercially. OBJECTIVE Systematic review of the economic impact of genetic tests in ASD. METHODS We performed a systematic search of databases Pubmed, Medline, Cochrane, Econlit and the NHS Center for Reviews and Dissemination for articles in English and German from January 1, 2000 to December 31, 2015. Original articles published in peer-reviewed journals were screened in a two-step process. First, we focused our search on economic evaluations of genetic tests for ASD. Second, we searched for any economic evaluation (EE) of genetic tests. RESULTS We identified 185 EE of genetic tests for various diseases. However, not a single EE of genetic tests has been found for ASD. The outcomes used in the EE of the genetic tests were heterogeneous, and results were generally not comparable. CONCLUSION There is no evidence for cost-effectiveness of any genetic diagnostic test for ASD, although such genetic tests are available commercially. Cost-effectiveness analyses for genetic diagnostic tests for ASD are urgently required. There is a clear lack in research for EE of genetic tests.
Collapse
Affiliation(s)
- Andreas Ziegler
- Univ.-Prof. Dr. Andreas Ziegler, Institut für Medizinische Biometrie und Statistik Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany, E-mail:
| | | | | |
Collapse
|
6
|
The association between familial ASD diagnosis, autism symptomatology and developmental functioning in young children. Eur Child Adolesc Psychiatry 2016; 25:1133-40. [PMID: 26983421 DOI: 10.1007/s00787-016-0838-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Few studies have directly compared individuals with and without a relative diagnosed with ASD on various domains. The present study aimed to examine the relationship between familial ASD diagnosis and the exhibition of ASD symptoms in young children with and without ASD diagnoses. Participants included 8353 children aged 17-37 months old and their families. They were divided into four groups based on individual and family diagnosis, then compared on autism symptomatology and developmental domains. No differences were found between ASD groups on overall scores and each of the factor domains, indicating no association between family ASD diagnosis and ASD symptomatology or developmental functioning. Disparate results were found for atypically developing groups with and without relatives diagnosed with ASD. Implications of these results are discussed.
Collapse
|
7
|
Vijayakumar NT, Judy MV. Autism spectrum disorders: Integration of the genome, transcriptome and the environment. J Neurol Sci 2016; 364:167-76. [PMID: 27084239 DOI: 10.1016/j.jns.2016.03.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Autism spectrum disorders denote a series of lifelong neurodevelopmental conditions characterized by an impaired social communication profile and often repetitive, stereotyped behavior. Recent years have seen the complex genetic architecture of the disease being progressively unraveled with advancements in gene finding technology and next generation sequencing methods. However, a complete elucidation of the molecular mechanisms behind autism is necessary for potential diagnostic and therapeutic applications. A multidisciplinary approach should be adopted where the focus is not only on the 'genetics' of autism but also on the combinational roles of epigenetics, transcriptomics, immune system disruption and environmental factors that could all influence the etiopathogenesis of the disease. ASD is a clinically heterogeneous disorder with great genetic complexity; only through an integrated multidimensional effort can modern autism research progress further.
Collapse
Affiliation(s)
- N Thushara Vijayakumar
- Department of Computer Science & IT., Amrita School of Arts & Sciences, Amrita Vishwa Vidyapeetham, Amrita University, Kochi, India.
| | - M V Judy
- Department of Computer Science & IT., Amrita School of Arts & Sciences, Amrita Vishwa Vidyapeetham, Amrita University, Kochi, India
| |
Collapse
|
8
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|