1
|
Polis B, Cuda CM, Putterman C. Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development. Autoimmunity 2024; 57:2330387. [PMID: 38555866 DOI: 10.1080/08916934.2024.2330387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.
Collapse
Affiliation(s)
- Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Li AM, Hill RA, Grutzendler J. Intravital Imaging of Neocortical Heterotopia Reveals Aberrant Axonal Pathfinding and Myelination around Ectopic Neurons. Cereb Cortex 2021; 31:4340-4356. [PMID: 33877363 PMCID: PMC8328209 DOI: 10.1093/cercor/bhab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/08/2020] [Indexed: 11/12/2022] Open
Abstract
Neocortical heterotopia consist of ectopic neuronal clusters that are frequently found in individuals with cognitive disability and epilepsy. However, their pathogenesis remains poorly understood due in part to a lack of tractable animal models. We have developed an inducible model of focal cortical heterotopia that enables their precise spatiotemporal control and high-resolution optical imaging in live mice. Here, we report that heterotopia are associated with striking patterns of circumferentially projecting axons and increased myelination around neuronal clusters. Despite their aberrant axonal patterns, in vivo calcium imaging revealed that heterotopic neurons remain functionally connected to other brain regions, highlighting their potential to influence global neural networks. These aberrant patterns only form when heterotopia are induced during a critical embryonic temporal window, but not in early postnatal development. Our model provides a new way to investigate heterotopia formation in vivo and reveals features suggesting the existence of developmentally modulated, neuron-derived axon guidance and myelination factors.
Collapse
Affiliation(s)
- Alice M Li
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Hill
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jaime Grutzendler
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Toia AR, Cuoco JA, Esposito AW, Ahsan J, Joshi A, Herron BJ, Torres G, Bolivar VJ, Ramos RL. Divergence and inheritance of neocortical heterotopia in inbred and genetically-engineered mice. Neurosci Lett 2016; 638:175-180. [PMID: 27993709 DOI: 10.1016/j.neulet.2016.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
Abstract
Cortical function emerges from the intrinsic properties of neocortical neurons and their synaptic connections within and across lamina. Neurodevelopmental disorders affecting migration and lamination of the neocortex result in cognitive delay/disability and epilepsy. Molecular layer heterotopia (MLH), a dysplasia characterized by over-migration of neurons into layer I, are associated with cognitive deficits and neuronal hyperexcitability in humans and mice. The breadth of different inbred mouse strains that exhibit MLH and inheritance patterns of heterotopia remain unknown. A neuroanatomical survey of numerous different inbred mouse strains, 2 first filial generation (F1) hybrids, and one consomic strain (C57BL/6J-Chr 1A/J/NaJ) revealed MLH only in C57BL/6 mice and the consomic strain. Heterotopia were observed in numerous genetically-engineered mouse lines on a congenic C57BL/6 background. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1. These data are relevant toward understanding neocortical development and disorders affecting neocortical lamination.
Collapse
Affiliation(s)
- Alyssa R Toia
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Joshua A Cuoco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Anthony W Esposito
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Jawad Ahsan
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Alok Joshi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Bruce J Herron
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, United States
| | - German Torres
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States.
| |
Collapse
|
4
|
Ramos RL, Siu NY, Brunken WJ, Yee KT, Gabel LA, Van Dine SE, Hoplight BJ. Cellular and Axonal Constituents of Neocortical Molecular Layer Heterotopia. Dev Neurosci 2014; 36:477-89. [DOI: 10.1159/000365100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
|
5
|
Neocortical molecular layer heterotopia in substrains of C57BL/6 and C57BL/10 mice. Brain Res 2011; 1391:36-43. [PMID: 21419110 DOI: 10.1016/j.brainres.2011.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
Abstract
Abnormal development of the neocortex is often associated with cognitive deficits and epilepsy. Rodent models are widely used to study normal and abnormal cortical development and have revealed the roles of many important genetic and environmental factors. Interestingly, several inbred mouse strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations including C57BL/6J mice, which are among the most widely utilized mice. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia in C57BL/6J mice and related strains obtained from three commercial vendors as well as mice bred in academic vivaria from founders obtained commercially. In particular, we found that the prevalence of molecular-layer heterotopia vaired according to the sex as well as the vendor-of-origin of the mouse. These data are relevant to the use of this strain as a mouse-model in the study of brain-behavior relationships.
Collapse
|
6
|
Fitch RH, Breslawski H, Rosen GD, Chrobak JJ. Persistent spatial working memory deficits in rats with bilateral cortical microgyria. Behav Brain Funct 2008; 4:45. [PMID: 18828918 PMCID: PMC2572615 DOI: 10.1186/1744-9081-4-45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 10/01/2008] [Indexed: 12/17/2022] Open
Abstract
Background Anomalies of cortical neuronal migration (e.g., microgyria (MG) and/or ectopias) are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG) on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8) and sham (n = 10) littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial), all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks) of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors). Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.
Collapse
Affiliation(s)
- R Holly Fitch
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, CT, 06269, USA.
| | | | | | | |
Collapse
|
7
|
Ramos RL, Smith PT, DeCola C, Tam D, Corzo O, Brumberg JC. Cytoarchitecture and transcriptional profiles of neocortical malformations in inbred mice. ACTA ACUST UNITED AC 2008; 18:2614-28. [PMID: 18308707 DOI: 10.1093/cercor/bhn019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malformations of neocortical development are associated with cognitive dysfunction and increased susceptibility to epileptogenesis. Rodent models are widely used to study neocortical malformations and have revealed important genetic and environmental mechanisms that contribute to neocortical development. Interestingly, several inbred mice strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations. In the present report we examine the cytoarchitecture and myeloarchitecture of the neocortex of 11 inbred mouse strains and identified malformations of cortical development, including molecular layer heterotopia, in all but one strain. We used in silico methods to confirm our observations and determined the transcriptional profiles of cells found within heterotopia. These data indicate cellular and transcriptional diversity present in cells in malformations. Furthermore, the presence of dysplasia in nearly every inbred strain examined suggests that malformations of neocortical development are a common feature in the neocortex of inbred mice.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Psychology, Queens College, CUNY, Flushing, NY 11367, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Theories of developmental dyslexia differ on how to best interpret the great variety of symptoms (linguistic, sensory and motor) observed in dyslexic individuals. One approach views dyslexia as a specific phonological deficit, which sometimes co-occurs with a more general sensorimotor syndrome. This article on the neurobiology of dyslexia shows that neurobiological data are indeed consistent with this view, explaining both how a specific phonological deficit might arise, and why a sensorimotor syndrome should be significantly associated with it. This new conceptualisation of the aetiology of dyslexia could generalize to other neurodevelopmental disorders, and might further explain heterogeneity within each disorder and comorbidity between disorders.
Collapse
Affiliation(s)
- Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (EHESS/CNRS/ENS), 46 rue d'Ulm, 75230 Paris Cedex 5, France.
| |
Collapse
|
9
|
Gresack JE, Frick KM. Male mice exhibit better spatial working and reference memory than females in a water-escape radial arm maze task. Brain Res 2003; 982:98-107. [PMID: 12915244 DOI: 10.1016/s0006-8993(03)03000-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study examined sex differences in spatial working and reference memory in C57BL/6 mice. Males and females were tested in a version of the spatial 8-arm radial arm maze in which the motivating stimulus was escape from water. To test spatial working memory, four arms were baited with submerged escape platforms, each of which was removed after it was found. Four arms that never contained platforms assessed spatial reference memory. In addition to determining the number of working memory and reference memory errors made in each session, working memory errors made in each trial were analyzed to examine performance as the number of arms to be remembered (i.e. the working memory load) increased. Males committed significantly fewer working memory and reference memory errors than females throughout testing. Within a session, males committed fewer working memory errors than females as the working memory load increased. These sex differences were particularly evident during task acquisition. The data indicate that male C57BL/6 mice learn both the working and reference memory components of a water-escape motivated radial arm maze task better than female mice.
Collapse
Affiliation(s)
- Jodi E Gresack
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
10
|
Peiffer AM, Rosen GD, Fitch RH. Sex differences in rapid auditory processing deficits in ectopic BXSB/MpJ mice. Neuroreport 2002; 13:2277-80. [PMID: 12488810 DOI: 10.1097/00001756-200212030-00021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prior research with rodent models, performed predominantly in males, has demonstrated a significant association between focal neocortical malformations (e.g. ectopias and microgyria) and rate-specific auditory processing deficits. In the current study and consistent with prior findings, we report that ectopic male BXSB/MpJ mice exhibit impairments in detecting a two-tone oddball stimulus at short but not long inter-stimulus interval durations when compared to non-ectopic male littermates. However, ectopic female littermates showed no rapid auditory processing deficit when compared to non-ectopic females on this same task. Current results add growing support to: (1) an association between focal cortical malformations and impaired auditory processing in males; and (2) the existence of sex differences in the behavioral consequences of focal cortical malformations.
Collapse
Affiliation(s)
- Ann M Peiffer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | | | | |
Collapse
|
11
|
Hyde LA, Stavnezer AJ, Bimonte HA, Sherman GF, Denenberg VH. Spatial and nonspatial Morris maze learning: impaired behavioral flexibility in mice with ectopias located in the prefrontal cortex. Behav Brain Res 2002; 133:247-59. [PMID: 12110458 DOI: 10.1016/s0166-4328(02)00022-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
About half of BXSB/MpJ-Yaa (BXSB) mice have neocortical ectopias (misplaced clusters of neurons located in layer I of cortex). Previous behavioral studies have suggested that ectopic mice have superior spatial, but equivalent nonspatial, reference memory learning. However, since spatial and nonspatial learning were not assessed in the same apparatus and with the same testing procedure, it is unclear if this conclusion is accurate. We have created a new nonspatial Morris maze for mice that differs from the spatial task only in the type of cues that must be utilized to efficiently locate the platform (intra-maze black/white patterns vs. extra-maze room cues) and does not differ in the level of task complexity or the presence of objects within the maze. Ectopic mice were very good in utilizing extra-maze cues when learning the spatial version and in utilizing intra-maze cues when learning the nonspatial version of the Morris maze, while non-ectopics were not, suggesting that ectopics have superior spatial and nonspatial reference memory. Ectopias in BXSB mice are usually located in prefrontal and/or motor cortex. The prefrontal cortex is involved in behavioral flexibility (e.g. being able to easily switch from using spatial to nonspatial cues). Only ectopic mice with ectopias specifically located in the prefrontal region of cortex demonstrated difficulty switching from using extra-maze to intra-maze cues and vice versa. Thus, the presence of one or more ectopias in the prefrontal region of cortex disrupted one of the normal functions of the prefrontal cortex.
Collapse
Affiliation(s)
- Lynn A Hyde
- Biobehavioral Sciences Graduate Degree Program, University of Connecticut, U-154, 3107 Horsebarn Hill Road, Storrs 06269-4154, USA
| | | | | | | | | |
Collapse
|