1
|
Papapanou M, Vaidakis D, Paraskevas T, Sergentanis TN, Siristatidis CS. Pharmacological interventions for peripartum cardiomyopathy. Cochrane Database Syst Rev 2024; 10:CD014851. [PMID: 39474978 PMCID: PMC11523253 DOI: 10.1002/14651858.cd014851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effectiveness and safety of available pharmacological interventions for the care of women diagnosed with PPCM.
Collapse
Affiliation(s)
- Michail Papapanou
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Obstetrics, Gynecology and Reproductive Medicine Working Group, Society of Junior Doctors, Athens, Greece
| | - Dennis Vaidakis
- Department of Basic and Clinical Sciences, University of Nicosia, Medical school, Nicosia, Cyprus
| | | | - Theodoros N Sergentanis
- Department of Public Health Policy, School of Public Health, University of West Attica, Aigaleo, Greece
| | - Charalampos S Siristatidis
- Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Bridges RS. The behavioral neuroendocrinology of maternal behavior: Past accomplishments and future directions. Horm Behav 2020; 120:104662. [PMID: 31927023 PMCID: PMC7117973 DOI: 10.1016/j.yhbeh.2019.104662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
Research on the neuroendocrine-endocrine-neural regulation of maternal behavior has made significant progress the past 50 years. In this mini-review progress during this period has been divided into five stages. These stages consist of advances in the identification of endocrine factors that mediate maternal care, the characterization of the neural basis of maternal behavior with reference to endocrine actions, the impact of developmental and experiential states on maternal care, the dynamic neuroplastic maternal brain, and genes and motherhood. A final section concludes with a discussion of future directions in the field of the neurobiology/neuroendocrinology of motherhood.
Collapse
Affiliation(s)
- Robert S Bridges
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
3
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
4
|
Paul Friedman K, Papineni S, Marty MS, Yi KD, Goetz AK, Rasoulpour RJ, Kwiatkowski P, Wolf DC, Blacker AM, Peffer RC. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study. Crit Rev Toxicol 2016; 46:785-833. [PMID: 27347635 PMCID: PMC5044773 DOI: 10.1080/10408444.2016.1193722] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 10/27/2022]
Abstract
The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.
Collapse
Affiliation(s)
| | - Sabitha Papineni
- Human Health Assessment, Dow AgroSciences LLC,
Indianapolis,
IN,
USA
| | - M. Sue Marty
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company,
Midland,
MI,
USA
| | - Kun Don Yi
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| | - Amber K. Goetz
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| | | | - Pat Kwiatkowski
- Human Safety, Bayer CropScience LP, Research Triangle Park,
NC,
USA
| | - Douglas C. Wolf
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| | - Ann M. Blacker
- Human Safety, Bayer CropScience LP, Research Triangle Park,
NC,
USA
| | - Richard C. Peffer
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| |
Collapse
|
5
|
Bridges RS. Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 2015; 36:178-96. [PMID: 25500107 PMCID: PMC4342279 DOI: 10.1016/j.yfrne.2014.11.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/31/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The expression of maternal behavior in mammals is regulated by the developmental and experiential events over a female's lifetime. In this review the relationships between the endocrine and neural systems that play key roles in these developmental and experiential processes that affect both the establishment and maintenance of maternal care are presented. The involvement of the hormones estrogen, progesterone, and lactogens are discussed in the context of ligand, receptor, and gene activity in rodents and to a lesser extent in higher mammals. The roles of neuroendocrine factors, including oxytocin, vasopressin, classical neurotransmitters, and other neural gene products that regulate aspects of maternal care are set forth, and the interactions of hormones with central nervous system mediators of maternal behavior are discussed. The impact of prior developmental factors, including epigenetic events, and maternal experience on subsequent maternal care are assessed over the course of the female's lifespan. It is proposed that common neuroendocrine mechanisms underlie the regulation of maternal care in mammals.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Neuroscience and Reproductive Biology Section, Tufts University - Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|