1
|
Dumont H, Roux-Sibilon A, Goffaux V. Horizontal face information is the main gateway to the shape and surface cues to familiar face identity. PLoS One 2024; 19:e0311225. [PMID: 39374235 PMCID: PMC11458052 DOI: 10.1371/journal.pone.0311225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Humans preferentially rely on horizontal cues when recognizing face identity. The reasons for this preference are largely elusive. Past research has proposed the existence of two main sources of face identity information: shape and surface reflectance. The access to surface and shape is disrupted by picture-plane inversion while contrast negation selectively impedes access to surface cues. Our objective was to characterize the shape versus surface nature of the face information conveyed by the horizontal range. To do this, we tracked the effects of inversion and negation in the orientation domain. Participants performed an identity recognition task using orientation-filtered (0° to 150°, 30° steps) pictures of familiar male actors presented either in a natural upright position and contrast polarity, inverted, or negated. We modelled the inversion and negation effects across orientations with a Gaussian function using a Bayesian nonlinear mixed-effects modelling approach. The effects of inversion and negation showed strikingly similar orientation tuning profiles, both peaking in the horizontal range, with a comparable tuning strength. These results suggest that the horizontal preference of human face recognition is due to this range yielding a privileged access to shape and surface cues, i.e. the two main sources of face identity information.
Collapse
Affiliation(s)
- Helene Dumont
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
| | - Alexia Roux-Sibilon
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Université Clermont Auvergne, CNRS, LAPSCO, Clermont-Ferrand, France
| | - Valérie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Balas B, Auen A, Saville A, Schmidt J, Harel A. Children are sensitive to mutual information in intermediate-complexity face and non-face features. J Vis 2021; 20:6. [PMID: 32407437 PMCID: PMC7409612 DOI: 10.1167/jov.20.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding developmental changes in children's use of specific visual information for recognizing object categories is essential for understanding how experience shapes recognition. Research on the development of face recognition has focused on children's use of low-level information (e.g. orientation sub-bands), or high-level information. In face categorization tasks, adults also exhibit sensitivity to intermediate complexity features that are diagnostic of the presence of a face. Do children also use intermediate complexity features for categorizing faces and objects, and, if so, how does their sensitivity to such features change during childhood? Intermediate-complexity features bridge the gap between low- and high-level processing: they have computational benefits for object detection and segmentation, and are known to drive neural responses in the ventral visual system. Here, we have investigated the developmental trajectory of children's sensitivity to diagnostic category information in intermediate-complexity features. We presented children (5–10 years old) and adults with image fragments of faces (Experiment 1) and cars (Experiment 2) varying in their mutual information, which quantifies a fragment's diagnosticity of a specific category. Our goal was to determine whether children were sensitive to the amount of mutual information in these fragments, and if their information usage is different from adults. We found that despite better overall categorization performance in adults, all children were sensitive to fragment diagnosticity in both categories, suggesting that intermediate representations of appearance are established early in childhood. Moreover, children's usage of mutual information was not limited to face fragments, suggesting the extracting intermediate-complexity features is a process that is not specific only to faces. We discuss the implications of our findings for developmental theories of face and object recognition.
Collapse
|
3
|
Jacobs C, Petras K, Moors P, Goffaux V. Contrast versus identity encoding in the face image follow distinct orientation selectivity profiles. PLoS One 2020; 15:e0229185. [PMID: 32187178 PMCID: PMC7080280 DOI: 10.1371/journal.pone.0229185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/02/2020] [Indexed: 11/18/2022] Open
Abstract
Orientation selectivity is a fundamental property of primary visual encoding. High-level processing stages also show some form of orientation dependence, with face identification preferentially relying on horizontally-oriented information. How high-level orientation tuning emerges from primary orientation biases is unclear. In the same group of participants, we derived the orientation selectivity profile at primary and high-level visual processing stages using a contrast detection and an identity matching task. To capture the orientation selectivity profile, we calculated the difference in performance between all tested orientations (0, 45, 90, and 135°) for each task and for upright and inverted faces, separately. Primary orientation selectivity was characterized by higher sensitivity to oblique as compared to cardinal orientations. The orientation profile of face identification showed superior horizontal sensitivity to face identity. In each task, performance with upright and inverted faces projected onto qualitatively similar a priori models of orientation selectivity. Yet the fact that the orientation selectivity profiles of contrast detection in upright and inverted faces correlated significantly while such correlation was absent for identification indicates a progressive dissociation of orientation selectivity profiles from primary to high-level stages of orientation encoding. Bayesian analyses further indicate a lack of correlation between the orientation selectivity profiles in the contrast detection and face identification tasks, for upright and inverted faces. From these findings, we conclude that orientation selectivity shows distinct profiles at primary and high-level stages of face processing and that a transformation must occur from general cardinal attenuation when processing basic properties of the face image to horizontal tuning when encoding more complex properties such as identity.
Collapse
Affiliation(s)
- Christianne Jacobs
- Faculty of Psychology and Educational Sciences, Research Institute for Psychological Science (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
| | - Kirsten Petras
- Faculty of Psychology and Educational Sciences, Research Institute for Psychological Science (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Pieter Moors
- Faculty of Psychology and Educational Sciences, Research Institute for Psychological Science (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Department of Brain and Cognition, Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium
| | - Valerie Goffaux
- Faculty of Psychology and Educational Sciences, Research Institute for Psychological Science (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Brain and Cognition, Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium
- Institute of Neuroscience (IoNS), UC Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
4
|
Balas B, Harel A, Auen A, Saville A. Neural Sensitivity to Mutual Information in Intermediate-Complexity Face Features Changes during Childhood. Brain Sci 2019; 9:E154. [PMID: 31261725 PMCID: PMC6680524 DOI: 10.3390/brainsci9070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
One way in which face recognition develops during infancy and childhood is with regard to the visual information that contributes most to recognition judgments. Adult face recognition depends on critical features spanning a hierarchy of complexity, including low-level, intermediate, and high-level visual information. To date, the development of adult-like information biases for face recognition has focused on low-level features, which are computationally well-defined but low in complexity, and high-level features, which are high in complexity, but not defined precisely. To complement this existing literature, we examined the development of children's neural responses to intermediate-level face features characterized using mutual information. Specifically, we examined children's and adults' sensitivity to varying levels of category diagnosticity at the P100 and N170 components. We found that during middle childhood, sensitivity to mutual information shifts from early components to later ones, which may indicate a critical restructuring of face recognition mechanisms that takes place over several years. This approach provides a useful bridge between the study of low- and high-level visual features for face recognition and suggests many intriguing questions for further investigation.
Collapse
Affiliation(s)
- Benjamin Balas
- Department of Psychology, Center for Visual and Cognitive Neuroscience, North Dakota State University, Fargo, ND 58102, USA.
| | - Assaf Harel
- Department of Psychology, Center for Visual and Cognitive Neuroscience, North Dakota State University, Fargo, ND 58102, USA
| | - Amanda Auen
- Department of Psychology, Center for Visual and Cognitive Neuroscience, North Dakota State University, Fargo, ND 58102, USA
| | - Alyson Saville
- Department of Psychology, Center for Visual and Cognitive Neuroscience, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
5
|
Hashemi A, Pachai MV, Bennett PJ, Sekuler AB. The role of horizontal facial structure on the N170 and N250. Vision Res 2019; 157:12-23. [DOI: 10.1016/j.visres.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 10/17/2022]
|
6
|
Balas B, van Lamsweerde AE, Saville A, Schmidt J. School‐age children's neural sensitivity to horizontal orientation energy in faces. Dev Psychobiol 2017; 59:899-909. [DOI: 10.1002/dev.21546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/17/2017] [Indexed: 11/09/2022]
|
7
|
Goffaux V, Greenwood JA. The orientation selectivity of face identification. Sci Rep 2016; 6:34204. [PMID: 27677359 PMCID: PMC5039756 DOI: 10.1038/srep34204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022] Open
Abstract
Recent work demonstrates that human face identification is most efficient when based on horizontal, rather than vertical, image structure. Because it is unclear how this specialization for upright (compared to inverted) face processing emerges in the visual system, the present study aimed to systematically characterize the orientation sensitivity profile for face identification. With upright faces, identification performance in a delayed match-to-sample task was highest for horizontally filtered images and declined sharply with oblique and vertically filtered images. Performance was well described by a Gaussian function with a bandwidth around 25°. Face inversion reshaped this sensitivity profile dramatically, with a downward shift of the entire tuning curve as well as a reduction in the amplitude of the horizontal peak and a doubling in bandwidth. The use of naturalistic outer contours (vs. a common outline mask) was also found to reshape this sensitivity profile by increasing sensitivity to oblique information in the near-horizontal range. Altogether, although face identification is sharply tuned to horizontal angles, both inversion and outline masking can profoundly reshape this orientation sensitivity profile. This combination of image- and observer-driven effects provides an insight into the functional relationship between orientation-selective processes within primary and high-level stages of the human brain.
Collapse
Affiliation(s)
- Valerie Goffaux
- Research Institute for Psychological Science, Université Catholique de Louvain, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Belgium
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands
| | | |
Collapse
|