Helicobacter pylori Infection Aggravates Diet-induced Insulin Resistance in Association With Gut Microbiota of Mice.
EBioMedicine 2016;
12:247-254. [PMID:
27743904 PMCID:
PMC5078605 DOI:
10.1016/j.ebiom.2016.09.010]
[Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that Helicobacter pylori infection is associated with insulin resistance (IR) yet the underlying mechanisms are still obscure. The vital role of gut microbiota in triggering IR has been increasingly reported, however, no study has explored the correlation of gut microbiota and H. pylori-associated IR. Using H. pylori-infected mice model fed different diet structures, we demonstrated that H. pylori infection significantly aggravated high-fat diet (HFD)-induced metabolic disorders at the early stage, the extent of which was close to the effect of long-term HFD. Interestingly, we observed dynamic alterations in gut microbiota that were consistent with the changes in the metabolic phenotype induced by H. pylori and HFD. There may be an interaction among H. pylori, diet and gut microbiota, which dysregulates the host metabolic homeostasis, and treatment of H. pylori may be beneficial to the patients with impaired glucose tolerance in addition to diet control.
H. pylori infection aggravates high-fat diet induced metabolic disorders at the early stage in C57BL/6 mice.
H. pylori infection in high-fat diet induces dynamic alterations of gut microbiota consistent with the metabolic phynotype.
H. pylori is one of the most common human bacterial pathogens which causes gastric disorders. Epidemiological studies show that its infection is associated with insulin resistance although the mechanism is obscure. Our study demonstrates that H. pylori infection significantly aggravates high-fat diet induced metabolic disorders at the early stage, accompanied by dramatic alterations of gut microbiota. Moreover, the changes of gut microbiota are consistent with the metabolic phynotype, indicating an interaction among H. pylori, diet and gut microbiota. Thus, the treatment of H. pylori may be beneficial to the patients with impaired glucose tolerance in addition to diet control.
Collapse