1
|
Gonzalez D, Cuenca X, Allende ML. Knockdown of tgfb1a partially improves ALS phenotype in a transient zebrafish model. Front Cell Neurosci 2024; 18:1384085. [PMID: 38644973 PMCID: PMC11032012 DOI: 10.3389/fncel.2024.1384085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) corresponds to a neurodegenerative disorder marked by the progressive degeneration of both upper and lower motor neurons located in the brain, brainstem, and spinal cord. ALS can be broadly categorized into two main types: sporadic ALS (sALS), which constitutes approximately 90% of all cases, and familial ALS (fALS), which represents the remaining 10% of cases. Transforming growth factor type-β (TGF-β) is a cytokine involved in various cellular processes and pathological contexts, including inflammation and fibrosis. Elevated levels of TGF-β have been observed in the plasma and cerebrospinal fluid (CSF) of both ALS patients and mouse models. In this perspective, we explore the impact of the TGF-β signaling pathway using a transient zebrafish model for ALS. Our findings reveal that the knockdown of tgfb1a lead to a partial prevention of motor axon abnormalities and locomotor deficits in a transient ALS zebrafish model at 48 h post-fertilization (hpf). In this context, we delve into the proposed distinct roles of TGF-β in the progression of ALS. Indeed, some evidence suggests a dual role for TGF-β in ALS progression. Initially, it seems to exert a neuroprotective effect in the early stages, but paradoxically, it may contribute to disease progression in later stages. Consequently, we suggest that the TGF-β signaling pathway emerges as an attractive therapeutic target for treating ALS. Nevertheless, further research is crucial to comprehensively understand the nuanced role of TGF-β in the pathological context.
Collapse
Affiliation(s)
- David Gonzalez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Xiomara Cuenca
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Gonzalez D, Vásquez-Doorman C, Luna A, Allende ML. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. Int J Mol Sci 2024; 25:1962. [PMID: 38396640 PMCID: PMC10888324 DOI: 10.3390/ijms25041962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by degeneration of lower motor neurons (LMNs), causing muscle weakness, atrophy, and paralysis. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and can be classified into four subgroups, depending on its severity. Even though the genetic component of SMA is well known, the precise mechanisms underlying its pathophysiology remain elusive. Thus far, there are three FDA-approved drugs for treating SMA. While these treatments have shown promising results, their costs are extremely high and unaffordable for most patients. Thus, more efforts are needed in order to identify novel therapeutic targets. In this context, zebrafish (Danio rerio) stands out as an ideal animal model for investigating neurodegenerative diseases like SMA. Its well-defined motor neuron circuits and straightforward neuromuscular structure offer distinct advantages. The zebrafish's suitability arises from its low-cost genetic manipulation and optical transparency exhibited during larval stages, which facilitates in vivo microscopy. This review explores advancements in SMA research over the past two decades, beginning with the creation of the first zebrafish model. Our review focuses on the findings using different SMA zebrafish models generated to date, including potential therapeutic targets such as U snRNPs, Etv5b, PLS3, CORO1C, Pgrn, Cpg15, Uba1, Necdin, and Pgk1, among others. Lastly, we conclude our review by emphasizing the future perspectives in the field, namely exploiting zebrafish capacity for high-throughput screening. Zebrafish, with its unique attributes, proves to be an ideal model for studying motor neuron diseases and unraveling the complexity of neuromuscular defects.
Collapse
Affiliation(s)
- David Gonzalez
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Constanza Vásquez-Doorman
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Adolfo Luna
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
| |
Collapse
|
3
|
Miguel Sanz C, Martinez Navarro M, Caballero Diaz D, Sanchez-Elexpuru G, Di Donato V. Toward the use of novel alternative methods in epilepsy modeling and drug discovery. Front Neurol 2023; 14:1213969. [PMID: 37719765 PMCID: PMC10501616 DOI: 10.3389/fneur.2023.1213969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Epilepsy is a chronic brain disease and, considering the amount of people affected of all ages worldwide, one of the most common neurological disorders. Over 20 novel antiseizure medications (ASMs) have been released since 1993, yet despite substantial advancements in our understanding of the molecular mechanisms behind epileptogenesis, over one-third of patients continue to be resistant to available therapies. This is partially explained by the fact that the majority of existing medicines only address seizure suppression rather than underlying processes. Understanding the origin of this neurological illness requires conducting human neurological and genetic studies. However, the limitation of sample sizes, ethical concerns, and the requirement for appropriate controls (many patients have already had anti-epileptic medication exposure) in human clinical trials underscore the requirement for supplemental models. So far, mammalian models of epilepsy have helped to shed light on the underlying causes of the condition, but the high costs related to breeding of the animals, low throughput, and regulatory restrictions on their research limit their usefulness in drug screening. Here, we present an overview of the state of art in epilepsy modeling describing gold standard animal models used up to date and review the possible alternatives for this research field. Our focus will be mainly on ex vivo, in vitro, and in vivo larval zebrafish models contributing to the 3R in epilepsy modeling and drug screening. We provide a description of pharmacological and genetic methods currently available but also on the possibilities offered by the continued development in gene editing methodologies, especially CRISPR/Cas9-based, for high-throughput disease modeling and anti-epileptic drugs testing.
Collapse
|
4
|
D'Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, Giorgi FS. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci 2023; 24:ijms24097702. [PMID: 37175408 PMCID: PMC10177843 DOI: 10.3390/ijms24097702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.
Collapse
Affiliation(s)
- Marta D'Amora
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biology, University of Pisa, 56125 Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Neurobiology-ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Wen Y, Zhang L, Li N, Tong A, Zhao C. Nutritional assessment models for Alzheimer's disease: Advances and perspectives. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry Faculty of Sciences Ourense Spain
| | - Lizhu Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Aijun Tong
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
6
|
Li Y, Wu F, Wu Q, Liu W, Li G, Yao B, Xiao R, Hu Y, Wang J. A novel open-source raspberry Pi-based behavioral testing in zebrafish. PLoS One 2022; 17:e0279550. [PMID: 36574388 PMCID: PMC9794099 DOI: 10.1371/journal.pone.0279550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
The zebrafish (Danio rerio) is widely used as a promising high-throughput model organism in neurobehavioral research. The mobility of zebrafish can be dissected into multiple behavior endpoints to assess its neurobehavioral performance. However, such facilities on the market are expensive and clumsy to be used in laboratories. Here, we designed a low-cost, automatic zebrafish behavior assay apparatus, barely without unintentional human operational errors. The data acquisition part, composed of Raspberry Pi and HQ Camera, automatically performs video recording and data storage. Then, the data processing process is also on the Raspberry Pi. Water droplets and inner wall reflection of multi-well cell culture plates (used for placing zebrafish) will affect the accuracy of object recognition. And during the rapid movement of zebrafish, the probability of zebrafish tracking loss increased significantly. Thus, ROI region and related thresholds were set, and the Kalman filter algorithm was performed to estimate the best position of zebrafish in each frame. In addition, all functions of this device are realized by the custom-written behavior analysis algorithm, which makes the optimization of the setup more efficient. Furthermore, this setup was also used to analyze the behavioral changes of zebrafish under different concentrations of alcohol exposure to verify the reliability and accuracy. The alcohol exposure induced an inverted U-shape dose-dependent behavior change in zebrafish, which was consistent with previous studies, showcasing that the data obtained from the setup proposed in this study are accurate and reliable. Finally, the setup was comprehensively assessed by evaluating the accuracy of zebrafish detection (precision, recall, F-score), and predicting alcohol concentration by XGBoost. In conclusion, this study provides a simple, and low-cost package for the determination of multiple behavioral parameters of zebrafish with high accuracy, which could be easily adapted for various other fields.
Collapse
Affiliation(s)
- Yunlin Li
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Fengye Wu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qinyan Wu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wenya Liu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Guanghui Li
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Benxing Yao
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ran Xiao
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yudie Hu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- * E-mail:
| |
Collapse
|
7
|
Li T, Li F, Lin J, Zhang Y, Zhang Q, Sun Y, Chen X, Xu M, Wang X, Li Q. Deletion of c16orf45 in zebrafish results in a low fertilization rate and increased thigmotaxis. Dev Psychobiol 2020; 62:1003-1010. [PMID: 32421859 DOI: 10.1002/dev.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/06/2022]
Abstract
c16orf45 is located at 16p13.11, an important locus related to neurodevelopmental diseases. Clinical studies have demonstrated that c16orf45 is associated with various neurodevelopmental diseases. To further elucidate the effect of c16orf45 on neural development, we constructed a zebrafish model with a stably inherited c16orf45 deletion via CRISPR/Cas9 technology. We found that deletion of c16orf45 significantly reduced the zebrafish fertilization rate, and both females and males showed reduced fertility. Meanwhile, the homozygous c16orf45 knockout zebrafish showed a developmental delay at 24 hr postfertilization (hpf). However, morphological changes were not apparent after 2 days postfertilization (dpf). Notably, the results of behavioral experiments revealed increased thigmotaxis in c16orf45- / - zebrafish at 2 months. In conclusion, these findings demonstrate that c16orf45 plays an important role in nervous system and reproductive system.
Collapse
Affiliation(s)
- Tingting Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Fei Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yanhe Sun
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res 2020; 391:112625. [PMID: 32428631 DOI: 10.1016/j.bbr.2020.112625] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
Behavior phenotypes are a powerful means of uncovering subtle xenobiotic chemical impacts on vertebrate nervous system development. Rodents manifest complex and informative behavior phenotypes but are generally not practical models in which to screen large numbers of chemicals. Zebrafish recapitulate much of the behavioral complexity of higher vertebrates, develop externally and are amenable to assay automation. Short duration automated assays can be leveraged to screen large numbers of chemicals or comprehensive dose-response for fewer chemicals. Here we describe a series of mostly automated assays including larval photomotor response, strobe light response, blue color avoidance, shoaling and mirror stimulus-response performed on the ZebraBox (ViewPoint Behavior Technologies) instrument platform. To explore the sensitivity and uniqueness of each assay endpoint, larval cohorts from 5 to 28 days post fertilization were acutely exposed to several chemicals broadly understood to impact different neuro-activities. We highlight the throughput advantages of using the same instrument platform for multiple assays and the ability of different assays to detect unique phenotypes among different chemicals.
Collapse
|
9
|
Barešić A, Nash AJ, Dahoun T, Howes O, Lenhard B. Understanding the genetics of neuropsychiatric disorders: the potential role of genomic regulatory blocks. Mol Psychiatry 2020; 25:6-18. [PMID: 31616042 PMCID: PMC6906185 DOI: 10.1038/s41380-019-0518-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023]
Abstract
Recent genome-wide association studies have identified numerous loci associated with neuropsychiatric disorders. The majority of these are in non-coding regions, and are commonly assigned to the nearest gene along the genome. However, this approach neglects the three-dimensional organisation of the genome, and the fact that the genome contains arrays of extremely conserved non-coding elements termed genomic regulatory blocks (GRBs), which can be utilized to detect genes under long-range developmental regulation. Here we review a GRB-based approach to assign loci in non-coding regions to potential target genes, and apply it to reanalyse the results of one of the largest schizophrenia GWAS (SWG PGC, 2014). We further apply this approach to GWAS data from two related neuropsychiatric disorders-autism spectrum disorder and bipolar disorder-to show that it is applicable to developmental disorders in general. We find that disease-associated SNPs are overrepresented in GRBs and that the GRB model is a powerful tool for linking these SNPs to their correct target genes under long-range regulation. Our analysis identifies novel genes not previously implicated in schizophrenia and corroborates a number of predicted targets from the original study. The results are available as an online resource in which the genomic context and the strength of enhancer-promoter associations can be browsed for each schizophrenia-associated SNP.
Collapse
Affiliation(s)
- Anja Barešić
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Alexander Jolyon Nash
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX37 JX, UK
| | - Oliver Howes
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008, Bergen, Norway.
| |
Collapse
|
10
|
Eijkenboom I, Sopacua M, Otten AB, Gerrits MM, Hoeijmakers JG, Waxman SG, Lombardi R, Lauria G, Merkies IS, Smeets HJ, Faber CG, Vanoevelen JM. Expression of pathogenic SCN9A mutations in the zebrafish: A model to study small-fiber neuropathy. Exp Neurol 2019; 311:257-264. [DOI: 10.1016/j.expneurol.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
|
11
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
12
|
Chongtham A, Barbaro B, Filip T, Syed A, Huang W, Smith MR, Marsh JL. Nonmammalian Models of Huntington's Disease. Methods Mol Biol 2018; 1780:75-96. [PMID: 29856015 DOI: 10.1007/978-1-4939-7825-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flies, worms, yeast and more recently zebra fish have all been engineered to express expanded polyglutamine repeat versions of Huntingtin with various resulting pathologies including early death, neurodegeneration, and loss of motor function. Each of these models present particular features that make it useful in studying the mechanisms of polyglutamine pathology. However, one particular unbiased readout of mHTT pathology is functional loss of motor control. Loss of motor control is prominent in patients, but it remains unresolved whether pathogenic symptoms in patients result from overt degeneration and loss of neurons or from malfunctioning of surviving neurons as the pathogenic insult builds up. This is why a functional assay such as motor control can be uniquely powerful in revealing early as well as late neurological deficits and does not rely on assumptions such as that the level of inclusions or the degree of neuronal loss can be equated with the level of pathology. Drosophila is well suited for such assays because it contains a functioning nervous system with many parallels to the human condition. In addition, the ability to readily express mHTT transgenes in different tissues and subsets of neurons allows one the possibility of isolating a particular effect to a subset of neurons where one can correlate subcellular events in response to mHTT challenge with pathology at both the cellular and organismal levels. Here we describe methods to monitor the degree of motor function disruption in Drosophila models of HD and we include a brief summary of other nonmammalian models of HD and discussion of their unique strengths.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA
| | - Brett Barbaro
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.,The Scripps Research Institute, La Jolla, CA, USA
| | - Tomas Filip
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.,Biology Centre Czech Acad. Sci., Ceske Budejovice, Czech Republic
| | - Adeela Syed
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA
| | - Weijian Huang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA
| | - Marianne R Smith
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.,University Advancement, UC Irvine, Irvine, CA, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.
| |
Collapse
|
13
|
Morsch M, Radford RAW, Don EK, Lee A, Hortle E, Cole NJ, Chung RS. Triggering Cell Stress and Death Using Conventional UV Laser Confocal Microscopy. J Vis Exp 2017. [PMID: 28190072 PMCID: PMC5409196 DOI: 10.3791/54983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using a standard confocal setup, a UV ablation method can be utilized to selectively induce cellular injury and to visualize single-cell responses and cell-cell interactions in the CNS in real-time. Previously, studying these cell-specific responses after injury often required complicated setups or the transfer of cells or animals into different, non-physiological environments, confounding immediate and short-term analysis. For example, drug-mediated ablation approaches often lack the specificity that is required to study single-cell responses and immediate cell-cell interactions. Similarly, while high-power pulsed laser ablation approaches provide very good control and tissue penetration, they require specialized equipment that can complicate real-time visualization of cellular responses. The refined UV laser ablation approach described here allows researchers to stress or kill an individual cell in a dose- and time-dependent manner using a conventional confocal microscope equipped with a 405-nm laser. The method was applied to selectively ablate a single neuron within a dense network of surrounding cells in the zebrafish spinal cord. This approach revealed a dose-dependent response of the ablated neurons, causing the fragmentation of cellular bodies and anterograde degeneration along the axon within minutes to hours. This method allows researchers to study the fate of an individual dying cell and, importantly, the instant response of cells-such as microglia and astrocytes-surrounding the ablation site.
Collapse
Affiliation(s)
- Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University;
| | - Rowan A W Radford
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University
| | - Emily K Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University
| | - Elinor Hortle
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University
| |
Collapse
|
14
|
Don EK, Formella I, Badrock AP, Hall TE, Morsch M, Hortle E, Hogan A, Chow S, Gwee SS, Stoddart JJ, Nicholson G, Chung R, Cole NJ. A Tol2 Gateway-Compatible Toolbox for the Study of the Nervous System and Neurodegenerative Disease. Zebrafish 2017; 14:69-72. [DOI: 10.1089/zeb.2016.1321] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emily K. Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Isabel Formella
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Andrew P. Badrock
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Elinor Hortle
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alison Hogan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sharron Chow
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Serene S.L. Gwee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Jack J. Stoddart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Garth Nicholson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nicholas J. Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Adel S, Heydeck D, Kuhn H, Ufer C. The lipoxygenase pathway in zebrafish. Expression and characterization of zebrafish ALOX5 and comparison with its human ortholog. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1-11. [DOI: 10.1016/j.bbalip.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023]
|
16
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
17
|
Giacomotto J, Rinkwitz S, Becker TS. Effective heritable gene knockdown in zebrafish using synthetic microRNAs. Nat Commun 2015; 6:7378. [PMID: 26051838 PMCID: PMC4468906 DOI: 10.1038/ncomms8378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
Although zebrafish is used to model human diseases through mutational and morpholino-based knockdown approaches, there are currently no robust transgenic knockdown tools. Here we investigate the knockdown efficiency of three synthetic miRNA-expressing backbones and show that these constructs can downregulate a sensor transgene with different degrees of potency. Using this approach, we reproduce spinal muscular atrophy (SMA) in zebrafish by targeting the smn1 gene. We also generate different transgenic lines, with severity and age of onset correlated to the level of smn1 inhibition, recapitulating for the first time the different forms of SMA in zebrafish. These lines are proof-of-concept that miRNA-based approaches can be used to generate potent heritable gene knockdown in zebrafish. Zebrafish is a model system for which for no reliable heritable gene silencing method is available. Here the authors provide a system for heritable miRNA-mediated knockdown and demonstrate tunable silencing of the smn1 gene that recapitulate different forms of spinal muscular atrophy.
Collapse
Affiliation(s)
- Jean Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.,Department of Physiology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Thomas S Becker
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.,Department of Physiology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
18
|
Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver. PLoS One 2015; 10:e0117370. [PMID: 25658845 PMCID: PMC4319907 DOI: 10.1371/journal.pone.0117370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.
Collapse
|
19
|
Huang Y, Wang XL, Zhang JW, Wu KS. Impact of endocrine-disrupting chemicals on reproductive function in zebrafish (Danio rerio). Reprod Domest Anim 2015; 50:1-6. [PMID: 25529055 DOI: 10.1111/rda.12468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/17/2014] [Indexed: 02/05/2023]
Abstract
The prevalence of endocrine-disrupting chemicals (EDCs) in the aquatic environment has been associated with the wide detection of alterations in the development and physiology of vertebrates. Zebrafish, as a model species, has been extensively used in toxicological research. In this review, we focus on recent published evidence of the harmful effects of EDCs on reproductive function in zebrafish, including skewed sex ratio, immature gonads, diminished sexual behaviour, decreased sperm count, reduced spawning and fertilization. These impairments mostly result from disruption to sex-steroid hormones induced by endocrine disruptors. We also discuss other effects of exposure to EDCs. In EDC exposure research, despite incomplete assessments of altered gonad histopathology and sexual behaviour, these present potential effective biomarkers or pathways for evaluating the reproductive function in zebrafish on EDC exposure. To date, the pernicious effects of some EDCs on the reproductive performance in laboratory zebrafish are well understood; however, similar alterations remain for further determination in wild-type fish and more kinds of EDCs. More studies should be performed under established scientific regulatory criteria to investigate the impact of EDCs on reproduction in zebrafish. Moreover, further research is required to explain the definite mechanism of sexual differentiation, which helps in understanding the shift of sexual phenotype with EDC exposure.
Collapse
Affiliation(s)
- Y Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | |
Collapse
|
20
|
Gioacchini G, Dalla Valle L, Benato F, Fimia GM, Nardacci R, Ciccosanti F, Piacentini M, Borini A, Carnevali O. Interplay between autophagy and apoptosis in the development of Danio rerio follicles and the effects of a probiotic. Reprod Fertil Dev 2014. [PMID: 23195281 DOI: 10.1071/rd12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study investigated autophagic processes in Danio rerio preovulatory follicles (Stage III and IV). There were more autophagosomes, as revealed by electron microscopy, in follicles from females fed the probiotic Lactobacillus rhamnosus IMC 501. This was confirmed by increased expression of genes involved in the autophagic process, namely ambra1, becn1, lc3 and uvrag. In addition, preovulatory follicles from females fed the probiotic contained more microtubule-associated protein 1 light chain 3 isoform II (LC3-II) and less p62 protein. The increased autophagy in preovulatory follicles from females fed the probiotic was concomitant with a decrease in the apoptotic process in the ovary, as evidenced by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling analysis and confirmed by lower expression of genes involved in apoptosis (i.e., p53, bax, apaf and cas3) and higher expression as igfII and igf1r. The results of the present study provide preliminary evidence of the involvement of autophagy during follicle development in the zebrafish ovary. In addition, we have demonstrated for the first time that a functional food, such as L. rhamnosus IMC 501, can modulate the balance between apoptosis and autophagy that regulates ovary physiology in zebrafish by inhibiting follicular apoptosis and improving follicular survival.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schurch NJ, Cole C, Sherstnev A, Song J, Duc C, Storey KG, McLean WHI, Brown SJ, Simpson GG, Barton GJ. Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs. PLoS One 2014; 9:e94270. [PMID: 24722185 PMCID: PMC3983147 DOI: 10.1371/journal.pone.0094270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/13/2014] [Indexed: 11/23/2022] Open
Abstract
The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct and complete annotation in addition to the underlying genomic sequence is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3′ untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3′ polyadenylation sites to within +/− 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3′ UTR re-annotation (including extension of one 3′ UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental data.
Collapse
Affiliation(s)
- Nicholas J. Schurch
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Christian Cole
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Alexander Sherstnev
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
| | - Junfang Song
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - Céline Duc
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G. Storey
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Sara J. Brown
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Gordon G. Simpson
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Geoffrey J. Barton
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
23
|
Miller GW, Truong L, Barton CL, Labut EM, Lebold KM, Traber MG, Tanguay RL. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:22-9. [PMID: 24657723 DOI: 10.1016/j.cbd.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf. Lab embryos differentially expressed (p<0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E- embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E+ diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E- embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome.
Collapse
Affiliation(s)
- Galen W Miller
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Carrie L Barton
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Edwin M Labut
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Katie M Lebold
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
24
|
Van Slyke CE, Bradford YM, Westerfield M, Haendel MA. The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio. J Biomed Semantics 2014; 5:12. [PMID: 24568621 PMCID: PMC3944782 DOI: 10.1186/2041-1480-5-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
Background The Zebrafish Anatomy Ontology (ZFA) is an OBO Foundry ontology that is used in conjunction with the Zebrafish Stage Ontology (ZFS) to describe the gross and cellular anatomy and development of the zebrafish, Danio rerio, from single cell zygote to adult. The zebrafish model organism database (ZFIN) uses the ZFA and ZFS to annotate phenotype and gene expression data from the primary literature and from contributed data sets. Results The ZFA models anatomy and development with a subclass hierarchy, a partonomy, and a developmental hierarchy and with relationships to the ZFS that define the stages during which each anatomical entity exists. The ZFA and ZFS are developed utilizing OBO Foundry principles to ensure orthogonality, accessibility, and interoperability. The ZFA has 2860 classes representing a diversity of anatomical structures from different anatomical systems and from different stages of development. Conclusions The ZFA describes zebrafish anatomy and development semantically for the purposes of annotating gene expression and anatomical phenotypes. The ontology and the data have been used by other resources to perform cross-species queries of gene expression and phenotype data, providing insights into genetic relationships, morphological evolution, and models of human disease.
Collapse
|
25
|
Hiller M, Agarwal S, Notwell JH, Parikh R, Guturu H, Wenger AM, Bejerano G. Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. Nucleic Acids Res 2013; 41:e151. [PMID: 23814184 PMCID: PMC3753653 DOI: 10.1093/nar/gkt557] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many important model organisms for biomedical and evolutionary research have sequenced genomes, but occupy a phylogenetically isolated position, evolutionarily distant from other sequenced genomes. This phylogenetic isolation is exemplified for zebrafish, a vertebrate model for cis-regulation, development and human disease, whose evolutionary distance to all other currently sequenced fish exceeds the distance between human and chicken. Such large distances make it difficult to align genomes and use them for comparative analysis beyond gene-focused questions. In particular, detecting conserved non-genic elements (CNEs) as promising cis-regulatory elements with biological importance is challenging. Here, we develop a general comparative genomics framework to align isolated genomes and to comprehensively detect CNEs. Our approach integrates highly sensitive and quality-controlled local alignments and uses alignment transitivity and ancestral reconstruction to bridge large evolutionary distances. We apply our framework to zebrafish and demonstrate substantially improved CNE detection and quality compared with previous sets. Our zebrafish CNE set comprises 54 533 CNEs, of which 11 792 (22%) are conserved to human or mouse. Our zebrafish CNEs (http://zebrafish.stanford.edu) are highly enriched in known enhancers and extend existing experimental (ChIP-Seq) sets. The same framework can now be applied to the isolated genomes of frog, amphioxus, Caenorhabditis elegans and many others.
Collapse
Affiliation(s)
- Michael Hiller
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA, Department of Computer Science, Stanford University, Stanford, CA 94305, USA and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigó R, Hubbard TJ. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2013; 22:1760-74. [PMID: 22955987 PMCID: PMC3431492 DOI: 10.1101/gr.135350.111] [Citation(s) in RCA: 3326] [Impact Index Per Article: 277.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
Collapse
Affiliation(s)
- Jennifer Harrow
- Wellcome Trust Sanger Institute, Wellcome Trust Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ling XP, Lu YH, Huang HQ. Differential protein profile in zebrafish (Danio rerio) brain under the joint exposure of methyl parathion and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3925-3941. [PMID: 22767353 DOI: 10.1007/s11356-012-1037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
As different chemicals, methyl parathion (MP) and cadmium (Cd) can induce neurotoxicity on the brain of aquatic ecosystems. This study aims to explore the differential expression proteins in the brain induced by their joint stress and their joint effects, which are poorly reported, and devotes finding novel biomarkers for monitoring their contamination in water and assessing their neurological effects. The bioaccumulation of MP and Cd in tissues after 96 h of exposure was first analyzed by GC and inductively coupled plasma-MS to provide insights into the interaction. Protein profile changes in the brains of the zebrafish (Danio rerio) exposed to MP and Cd were further investigated using the proteomic approach. The correlation of gene expression on the transcription level of mRNA and the translation level of protein was examined by real-time quantitative PCR and Western blotting analysis. It showed that Cd and MP have an interaction on their bioaccumulation, which suggests that their joint effect over 96 h might be antagonistic. Proteomics revealed that 22 protein spots changed their expression levels under stress, of which 16 proteins were identified using MS. These proteins were involved in oxidation/reduction, metabolism, energy production, receptor activity, and cytoskeleton assembly. Among them, five proteins with a remarkable abundance change are significantly suggested to play important roles in the joint effect. This work demonstrates that there exists an interaction between MP and Cd toxicities, which may aid in our understanding of the mechanism of neurotoxicity induced by joint stress. The results may also provide the possibility of the establishment of candidate biomarkers for monitoring MP and Cd contamination in water.
Collapse
Affiliation(s)
- Xue-Ping Ling
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China,
| | | | | |
Collapse
|
28
|
Engert F, Wilson SW. Zebrafish neurobiology: from development to circuit function and behaviour. Dev Neurobiol 2012; 72:215-7. [PMID: 22058058 DOI: 10.1002/dneu.20997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|