1
|
Shiau F, Ruzycki PA, Clark BS. A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev Biol 2021; 478:41-58. [PMID: 34146533 PMCID: PMC8386138 DOI: 10.1016/j.ydbio.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in high throughput single-cell RNA sequencing (scRNA-seq) technology have enabled the simultaneous transcriptomic profiling of thousands of individual cells in a single experiment. To investigate the intrinsic process of retinal development, researchers have leveraged this technology to quantify gene expression in retinal cells across development, in multiple species, and from numerous important models of human disease. In this review, we summarize recent applications of scRNA-seq and discuss how these datasets have complemented and advanced our understanding of retinal progenitor cell competence, cell fate specification, and differentiation. Finally, we also highlight the outstanding questions in the field that advances in single-cell data generation and analysis will soon be able to answer.
Collapse
Affiliation(s)
- Fion Shiau
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
LIM Homeobox 4 (lhx4) regulates retinal neural differentiation and visual function in zebrafish. Sci Rep 2021; 11:1977. [PMID: 33479361 PMCID: PMC7820405 DOI: 10.1038/s41598-021-81211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
LIM homeobox 4 (LHX4) is expressed in the photoreceptors (PRs) of the outer nuclear layer (ONL) and bipolar cells (BCs) of the inner nuclear layer (INL) in mouse and chicken retina. It regulates the subtype-specific development of rod BCs and cone BCs in the mouse retina. However, no report has been published on its expression and function in the zebrafish retina. In this study, we assessed the expression of Lhx4 using in situ hybridization (ISH) technique and explored its role in zebrafish (Danio rerio) retinal development via morpholino (MO) technology. We found that the expression of lhx4 in the zebrafish retina begins 48 h post-fertilization (hpf) and is continuously expressed in the ONL and INL. A zebrafish model constructed with lhx4 knockdown in the eyes through vivo-MO revealed that: lhx4 knockdown inhibits the differentiation of Parvalbumin+ amacrine cells (ACs) and Rhodopsin+ rod photoreceptors (RPs), enhances the expression of visual system homeobox 2 (vsx2); and damages the responses of zebrafish to light stimulus, without affecting the differentiation of OFF-BCs and rod BCs, and apoptosis in the retina. These findings reveal that lhx4 regulates neural differentiation in the retina and visual function during zebrafish embryonic development.
Collapse
|
3
|
Patel A, Anderson G, Galea GL, Balys M, Sowden JC. A molecular and cellular analysis of human embryonic optic fissure closure related to the eye malformation coloboma. Development 2020; 147:dev193649. [PMID: 33158926 DOI: 10.1242/dev.193649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Ocular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis. Gene set enrichment patterns showed conservation between species. Expression of genes involved in epithelial-to-mesenchymal transition was transiently enriched in the human fissure margins during OFC at days 41-44. Electron microscopy and histological analyses showed that cells transiently delaminate at the point of closure, and produce cytoplasmic protrusions, before rearranging to form two continuous epithelial layers. Apoptosis was not observed in the human fissure margins. These analyses support a model of human OFC in which epithelial cells at the fissure margins undergo a transient epithelial-to-mesenchymal-like transition, facilitating cell rearrangement to form a complete optic cup.
Collapse
Affiliation(s)
- Aara Patel
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Gabriel L Galea
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Monika Balys
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
4
|
Lu J, Liu R, Miao A, Chen X, Xiao W, Wang Y, Cao D, Pan J, Li L, Luo Y. The role of cldnh during the early retinal development in zebrafish. Exp Eye Res 2020; 200:108207. [PMID: 32866532 DOI: 10.1016/j.exer.2020.108207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/08/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Claudin-3, an integral component of tight junction, has recently been shown to be expressed in retinal ganglion cells, retinal pigment cells, and retinal vascular endothelial cells. However, the role of claudin-3 in the development of the neural retina and its vessels remains undefined. This study aimed to investigate the role of zebrafish claudin-h (cldnh), the closest ortholog of mouse and human claudin-3, in the development of the neural retina and its vessels. Cldnh levels in green fluorescent protein transgenic zebrafish were genetically manipulated by cldnh morpholino oligonucleotide (MO) and cldnh mRNA to investigate gene function. The expression of cldnh was analyzed using polymerase chain reaction and immunofluorescence staining. The altered morphological, cellular and molecular events in the cldnh MO-morphant eyes were detected using hematoxylin-eosin staining, fluorescent dye injection, confocal in vivo imaging, BrdU labeling, TUNEL assay, RNA sequencing, and Western blot. We demonstrated that the cldnh protein was expressed in the neural retina and the hyaloid vessel which is the predecessor of the retinal vessel in zebrafish. Cldnh knockdown delayed lamination of the neural retina and reduced its thickness, which might be associated with the downregulation of the retinal development-related genes of atoh7, pcdh17, crx, neurod1, insm1a, sox9b and cdh11, and the upregulation of the cell cycle and apoptosis-associated genes of tp53, cdkn1a and casp8. Cldnh knockdown also reduced the density and interrupted the lumenization of the hyaloid vessels, which might be owing to the downregulation of the vessel formation-related genes of hlx1 and myl7. In conclusion, cldnh was required for the normal development of the neural retina and its vessels in zebrafish, providing a basis for elucidating its role in the pathogenesis of retinal vascular or inflammatory diseases.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ruyuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Aiwen Miao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Di Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lisha Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
5
|
James A, Lee C, Williams AM, Angileri K, Lathrop KL, Gross JM. The hyaloid vasculature facilitates basement membrane breakdown during choroid fissure closure in the zebrafish eye. Dev Biol 2016; 419:262-272. [PMID: 27634568 DOI: 10.1016/j.ydbio.2016.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
A critical aspect of vertebrate eye development is closure of the choroid fissure (CF). Defects in CF closure result in colobomas, which are a significant cause of childhood blindness worldwide. Despite the growing number of mutated loci associated with colobomas, we have a limited understanding of the cell biological underpinnings of CF closure. Here, we utilize the zebrafish embryo to identify key phases of CF closure and regulators of the process. Utilizing Laminin-111 as a marker for the basement membrane (BM) lining the CF, we determine the spatial and temporal patterns of BM breakdown in the CF, a prerequisite for CF closure. Similarly, utilizing a combination of in vivo time-lapse imaging, β-catenin immunohistochemistry and F-actin staining, we determine that tissue fusion, which serves to close the fissure, follows BM breakdown closely. Periocular mesenchyme (POM)-derived endothelial cells, which migrate through the CF to give rise to the hyaloid vasculature, possess distinct actin foci that correlate with regions of BM breakdown. Disruption of talin1, which encodes a regulator of the actin cytoskeleton, results in colobomas and these correlate with structural defects in the hyaloid vasculature and defects in BM breakdown. cloche mutants, which entirely lack a hyaloid vasculature, also possess defects in BM breakdown in the CF. Taken together, these data support a model in which the hyaloid vasculature and/or the POM-derived endothelial cells that give rise to the hyaloid vasculature contribute to BM breakdown during CF closure.
Collapse
Affiliation(s)
- Andrea James
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Chanjae Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
| | - Andre M Williams
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
| | - Krista Angileri
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kira L Lathrop
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Developmental Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
6
|
Dang Z, Shangguan J, Zhang C, Hu P, Ren Y, Lv Z, Xiang H, Wang X. Loss of protocadherin-17 (PCDH-17) promotes metastasis and invasion through hyperactivation of EGFR/MEK/ERK signaling pathway in hepatocellular carcinoma. Tumour Biol 2015; 37:2527-35. [DOI: 10.1007/s13277-015-3970-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/21/2015] [Indexed: 01/03/2023] Open
|
7
|
Nesan D, Vijayan MM. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish. PLoS One 2013; 8:e80726. [PMID: 24348914 PMCID: PMC3858477 DOI: 10.1371/journal.pone.0080726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/06/2013] [Indexed: 01/22/2023] Open
Abstract
Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR), a ligand-bound transcription factor. In developing zebrafish (Danio rerio) embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf), respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|